NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
Program for International…2
What Works Clearinghouse Rating
Showing 1 to 15 of 152 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Preston, Christine; Hubber, Peter; Bondurant-Scott, Michele; Gunesekere, Ishara – Teaching Science, 2020
Constructing Direct Current (DC) electric circuits is simple and engaging for primary students, but that is not all there is to learning about electricity. Mandatory learning in the Australian Curriculum: Science (ACARA, 2018) expects Year 6 students to explain some of the processes underlying electric circuits. The abstract nature of key…
Descriptors: Energy, Teaching Methods, Elementary School Students, Science Curriculum
Peer reviewed Peer reviewed
Direct linkDirect link
Tho, Siew Wei; Lee, Tien Tien; Baharom, Sadiah – Teaching Science, 2018
Trends in contemporary science education emphasise the benefits of out-of-school learning experiences to help schools link science with everyday life (Tho, Chan, & Yeung, 2015). With the help of state-of-the-art technology, mobile devices--particularly smartphones--have the ability to work as data-logging tools for students to perform…
Descriptors: Educational Technology, Technology Uses in Education, Telecommunications, Handheld Devices
Peer reviewed Peer reviewed
Direct linkDirect link
Preston, Christine – Teaching Science, 2018
If you think physics is only for older children, think again. Much of the playtime of young children is filled with exploring--and wondering about and informally investigating--the way objects, especially toys, move. How forces affect objects, including: change in position, motion, and shape are fundamental to the big ideas in physics. This…
Descriptors: Science Instruction, Teaching Methods, Toys, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Low, David; Malik, Umairia; Wilson, Kate – Teaching Science, 2018
Large gender gaps in performance on questions involving projectile motion have been observed at high school and university level, even amongst high-achieving students. This gap is particularly problematic because projectile motion is typically one of the first topics formally taught in physics, and this may give girls an inappropriately negative…
Descriptors: Gender Differences, Science Instruction, Motion, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Koul, Anjni – Teaching Science, 2017
This article presents an instructional strategy called Premise-Reasoning- Outcome (PRO) designed to support students in the construction of scientific explanations. Informed by the philosophy of science and linguistic studies of science, the PRO strategy involves identifying three components of a scientific explanation: (i) premise--an accepted…
Descriptors: Educational Strategies, Science Instruction, Science Education, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Low, David; Wilson, Kate – Teaching Science, 2017
On entry to university, high-achieving physics students from all across Australia struggle to identify Newton's third law force pairs. In particular, less than one in ten can correctly identify the Newton's third law reaction pair to the weight of (gravitational force acting on) an object. Most students incorrectly identify the normal force on the…
Descriptors: Misconceptions, Scientific Concepts, Scientific Principles, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Preston, Christine – Teaching Science, 2017
Familiar toys can be used to scaffold young children's learning about basic physics as well as guide scientific inquiry. Teachers looking for resources to engage young children and develop science inquiry skills need look no further than the toy box. In this two-part activity, children first construct a Lego® car and use it to explore the effects…
Descriptors: Scaffolding (Teaching Technique), Young Children, Toys, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Raghavan, Neeraja – Teaching Science, 2017
Flotation is usually taught in Indian schools after students have been introduced to the concepts of mass, density, pressure, volume and buoyancy. This paper describes an attempt to teach the principle of flotation to a class of sixth graders--who had not yet been taught these concepts--so they could understand (and perhaps, arrive at) Archimedes'…
Descriptors: Science Instruction, Grade 6, Scientific Concepts, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Scherer, Nathaneal; Cousins, Aidan – Teaching Science, 2016
One of the important questions for any educator is, "How can I teach difficult and abstract concepts in a way that connects with students' real life?". This is especially true in the senior years, when students are often confronted with ideas that don't appear relevant to their lives, are primarily explainable using mathematics rather…
Descriptors: Science Instruction, Teaching Methods, Grade 12, Secondary School Science
Peer reviewed Peer reviewed
Direct linkDirect link
Tang, Kok-Sing – Teaching Science, 2015
This article presents an instructional strategy called Premise-Reasoning-Outcome (PRO) designed to support students in the construction of scientific explanations. Informed by the philosophy of science and linguistic studies of science, the PRO strategy involves identifying three components of a scientific explanation: (i) premise--an accepted…
Descriptors: Educational Strategies, Science Instruction, Science Education, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
McRae, Mike – Teaching Science, 2015
This article is written for primary and high school students, and provides a way to introduce kids to science and the concept of gravity.
Descriptors: Science Instruction, Science Activities, Elementary School Science, Secondary School Science
Peer reviewed Peer reviewed
Direct linkDirect link
Hill, Matthew; Sharma, Manjula – Teaching Science, 2015
The ability to represent the world like a scientist is difficult to teach; it is more than simply knowing the representations (e.g., graphs, words, equations and diagrams). For meaningful science learning to take place, consideration needs to be given to explicitly integrating representations into instructional methods, linked to the content, and…
Descriptors: Science Instruction, Worksheets, Teaching Methods, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Cheng, Meng-Fei; Cheng, Yufang; Hung, Shuo-Hsien – Teaching Science, 2014
Based on our experience of teaching physics in middle and senior secondary school, we have found that students have difficulty in reasoning at the microscopic level. Their reasoning is limited to the observational level so they have problems in developing scientific models of magnetism. Here, we suggest several practical activities and the use of…
Descriptors: Thinking Skills, Magnets, Science Education, Computer Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Gokalp, Muhammed Sait; Sharma, Manjula; Johnston, Ian; Sharma, Mia – Teaching Science, 2013
The purpose of this study was to investigate how WebQuests can be used in physics classes for teaching specific concepts. The study had three stages. The first stage was to develop a WebQuest on Newton's second law. The second stage involved developing a lesson plan to implement the WebQuest in class. In the final stage, the WebQuest was…
Descriptors: Web Based Instruction, Curriculum Implementation, Investigations, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Sandoval, Christopher – Teaching Science, 2013
The Ruben Flame Tube is named after H. Ruben, who published the demonstration experiment in "Annalen der Physik" in 1905. This article presents one of the many demonstrations the author uses to engage, motivate, and challenge his students.
Descriptors: Scientific Concepts, Physics, Science Instruction, Teaching Methods
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11