NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Rizik, Nadya; Taylor, Subhashni; Taylor, Neil; Sharma, Manjula – Teaching Science, 2018
Energy is one of the most complex yet central concepts taught in schools and is featured in the Australian Science Curriculum, as one of the six key organising ideas (Australian Curriculum, Assessment and Reporting Authority (ACARA), 2015). The literature portrays a multitude of complications associated with teaching energy (see Millar, 2005 for a…
Descriptors: Foreign Countries, Energy, Science Instruction, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Low, David; Malik, Umairia; Wilson, Kate – Teaching Science, 2018
Large gender gaps in performance on questions involving projectile motion have been observed at high school and university level, even amongst high-achieving students. This gap is particularly problematic because projectile motion is typically one of the first topics formally taught in physics, and this may give girls an inappropriately negative…
Descriptors: Gender Differences, Science Instruction, Motion, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Dale, Keith; Dale, Stephen G. – Teaching Science, 2018
The Australian Curriculum (n.d.) describes chemistry as having three interrelated strands, Science Inquiry Skills, Science as a Human Endeavour and Science Understanding. It also states "... the three strands of the Australian Curriculum: Science should be taught in an integrated way". This article will explore a model for integrating…
Descriptors: Foreign Countries, Science Instruction, Secondary School Science, Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Kin, Ng Hong; Ling, Tan Aik – Teaching Science, 2016
The concept of specificity of enzyme action can potentially be abstract for some students as they fail to appreciate how the three-dimensional configuration of enzymes and the active sites confer perfect fit for specific substrates. In science text books, the specificity of enzyme-substrate binding is typically likened to the action of a lock and…
Descriptors: Science Instruction, Scientific Concepts, Teaching Methods, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Crowley, Julianne; Titmus, Morgan – Teaching Science, 2016
This article explores an alternative conception held by high school and first-year university biology students regarding the structure of the left and right ventricles of the heart and the significance of the left ventricular wall being thicker than the right. The left ventricular wall of the heart is thicker than the right ventricular wall due to…
Descriptors: Biology, Science Instruction, Human Body, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Moore, Simon; Dawson, Vaille – Teaching Science, 2015
Science education involves students learning explanations of natural phenomena which are neither obvious nor intuitive. Generally, they have been arrived at and refined by years of dedicated inquiry on the part of large scientific communities. At the same time, these phenomena often concern the objects of everyday experience regarding which…
Descriptors: Physics, Scientific Concepts, Science Education, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
King, Donna; Ginns, Ian – Teaching Science, 2015
Engaging middle school students in science continues to be a challenge in Australian schools. One initiative that has been tried in the senior years but is a more recent development in the middle years is the context-based approach. In this ethnographic study, we researched the teaching and learning transactions that occurred in one ninth grade…
Descriptors: Middle School Students, Learner Engagement, Ethnography, Grade 9
Peer reviewed Peer reviewed
Direct linkDirect link
Hill, Matthew; Sharma, Manjula – Teaching Science, 2015
The ability to represent the world like a scientist is difficult to teach; it is more than simply knowing the representations (e.g., graphs, words, equations and diagrams). For meaningful science learning to take place, consideration needs to be given to explicitly integrating representations into instructional methods, linked to the content, and…
Descriptors: Science Instruction, Worksheets, Teaching Methods, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Geelan, David; Mahaffy, Peter; Mukherjee, Michelle – Teaching Science, 2014
Scientific visualisations such as computer-based animations and simulations are increasingly a feature of high school Science instruction. Visualisations are adopted enthusiastically by teachers and embraced by students, and there is good evidence that they are popular and well received. There is limited evidence, however, of how effective they…
Descriptors: Visualization, Chemistry, Scientific Concepts, High Schools
Peer reviewed Peer reviewed
Direct linkDirect link
Davis, James – Teaching Science, 2013
This paper is a qualitative, practice based study describing the use of the Focus-Action-Reflection (FAR) Guide (Harrison & Treagust, 2000) to address the shortcomings of a pedagogical analogical model in Year 10 Science. The aim of this paper is to present my experience of the FAR Guide in relation to an analogical model that gave rise to…
Descriptors: Grade 10, Qualitative Research, Science Instruction, Teaching Experience
Peer reviewed Peer reviewed
Direct linkDirect link
Dutt, Amit – Teaching Science, 2011
This paper reports on the nature of the conceptual understandings developed by Year 12 Victorian Certificate of Education (VCE) physics students as they made the transition from the essentially deterministic notions of classical physics, to interpretations characteristic of quantum theory. The research findings revealed the fact that the…
Descriptors: Quantum Mechanics, Physics, Science Instruction, Grade 12
Peer reviewed Peer reviewed
Direct linkDirect link
Hoban, Garry; Nielsen, Wendy – Teaching Science, 2010
"Slowmation" (abbreviated from "Slow Animation") is a simplified way of making an animation that enables students to create their own as a new way of learning about a science concept. When students make a slowmation, they create a sequence of five multimodal representations (the 5 Rs) with each one contributing to the learning…
Descriptors: Animation, Hands on Science, Teaching Methods, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
King, Donna – Teaching Science, 2009
Nationally and internationally, context-based programs have been implemented in an attempt to engage students in chemistry through connecting the canonical science with the real world. In Queensland, a context-based approach to chemistry was trialled in selected schools from 2002 but there is little research that investigates how students learn in…
Descriptors: Ethnography, Chemistry, Grade 11, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Carolan, Jim; Prain, Vaughan; Waldrip, Bruce – Teaching Science, 2008
There is now broad agreement that learners in primary and secondary school science need to know how to interpret and construct subject-specific ways of representing science activity and knowledge. There is also growing recognition that students are more motivated and learn more when they have opportunities to refine understandings through revising…
Descriptors: Secondary School Science, Foreign Countries, Elementary School Science, Science Instruction