NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 119 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Patrick, Amanda L. – Journal of Chemical Education, 2020
Mass spectrometry is one of the few instrumental analysis techniques that can be relatively well-understood with physics/chemistry knowledge typical of an advanced high school or a beginning undergraduate student. This positions mass spectrometry well to be used as a bridge between abstract concepts typically set as learning goals in courses at…
Descriptors: Measurement, Measurement Equipment, Science Equipment, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Cooper, Melanie M.; Stowe, Ryan L.; Crandell, Olivia M.; Klymkowsky, Michael W. – Journal of Chemical Education, 2019
The fundamental structure of a typical mainstream two-semester organic chemistry course, populated mostly by life science majors and taught at universities throughout the United States, has changed little since the 1970s. However, much of the research on learning in organic chemistry has been devoted to characterizing student difficulties of…
Descriptors: Organic Chemistry, College Science, Undergraduate Study, Curriculum Design
Peer reviewed Peer reviewed
Direct linkDirect link
Domenico, Janna; Schneider, Alexis M.; Sohlberg, Karl – Journal of Chemical Education, 2019
In this work, two exercises are described that are designed to teach students about the evolution and behavior of the electronic bands of graphene and bilayer graphene. These exercises involve performing extended Hückel molecular orbital theory calculations on polyacenes and polycyclic aromatic hydrocarbons. In the first exercise, students…
Descriptors: Chemistry, College Science, Science Instruction, Science Activities
Peer reviewed Peer reviewed
Direct linkDirect link
Pham, Susan N.; Kuether, Joshua E.; Gallagher, Miranda J.; Hernandez, Rodrigo Tapia; Williams, Denise N.; Zhi, Bo; Mensch, Arielle C.; Hamers, Robert J.; Rosenweig, Zeev; Fairbrother, Howard; Krause, Miriam O. P.; Feng, Z. Vivian; Haynes, Christy L. – Journal of Chemical Education, 2017
In recent years, nanomaterials have entered our daily lives via consumer products; thus, it has become increasingly important to implement activities to introduce these novel materials into chemistry curricula. Here we introduce a newly developed fluorescent nanomaterial, carbon dots, as a more environmentally friendly alternative to heavy-metal…
Descriptors: Chemistry, Electronic Equipment, Spectroscopy, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Enlow, Jessica L.; Marin, Dawn M.; Walter, Michael G. – Journal of Chemical Education, 2017
To improve polymer education for 9-12 and undergraduate students, a plastic electronics laboratory kit using polymer semiconductors has been developed. The three-module kit and curriculum use polymer semiconductors to provide hands-on inquiry activities with overlapping themes of electrical conductivity, light emission, and light-harvesting solar…
Descriptors: STEM Education, Electronics, Hands on Science, Inquiry
Peer reviewed Peer reviewed
Direct linkDirect link
Hare, Stephanie R.; Tantillo, Dean J. – Journal of Chemical Education, 2017
When new concepts, models, or theories are introduced in a course, their presentation should be accurate, even if depth is not the goal. In a recent publication in this Journal, the Woodward-Hoffmann rules were invoked in the context of a new laboratory experiment, but the associated description was inaccurate. Here we aim to clarify the…
Descriptors: Chemistry, Organic Chemistry, Laboratory Experiments, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Higman, Carolyn S.; Situ, Henry; Blacklin, Peter; Hein, Jason E. – Journal of Chemical Education, 2017
Advances in 3D printing technology over the past decade have led to its expansion into all subfields of science, including chemistry. This technology provides useful teaching tools that facilitate communication of difficult chemical concepts to students and researchers. Presented here is the use of 3D printing technology to create tangible models…
Descriptors: Undergraduate Study, College Science, Chemistry, Hands on Science
Peer reviewed Peer reviewed
Direct linkDirect link
Woelk, Klaus – Journal of Chemical Education, 2015
In a classroom or take-home activity, students are challenged to write their name as a combination of chemical-element symbols and calculate "their" molar mass. Age-appropriate versions ranging from middle school to entry-level college classes are discussed. Acceptable molar-mass suggestions may be used in a competition for the heaviest…
Descriptors: Science Instruction, Elementary School Science, Elementary Schools, Middle Schools
Peer reviewed Peer reviewed
Direct linkDirect link
Johnson, Brian J.; Graham, Kate J. – Journal of Chemical Education, 2015
This paper will describe a guided inquiry activity for teaching ligand field theory. Previous research suggests the guided inquiry approach is highly effective for student learning. This activity familiarizes students with the key concepts of molecular orbital theory applied to coordination complexes. Students will learn to identify factors that…
Descriptors: Inquiry, Science Instruction, Teaching Methods, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Swinehart, William E.; Zimmerman, Bonnie L.; Powell, Kinsey; Moore, Stephen D.; Iordanov, Tzvetelin D. – Journal of Chemical Education, 2014
A concept of the turbidimetric method for determining the concentration of ethanol in water-ethanol mixtures is described. A closed sample cell containing the analyte was heated to achieve vapor saturation and subsequent condensation. As the condensation occurred, the decrease in percentage transmittance with time due to light scattering was…
Descriptors: Science Instruction, Scientific Principles, Water, Light
Peer reviewed Peer reviewed
Direct linkDirect link
Umar, Yunusa – Journal of Chemical Education, 2014
A simple and effective hands-on classroom activity designed to illustrate basic polymer concepts is presented. In this activity, students build primary structures of homopolymers and different arrangements of monomers in copolymer using paper clips as monomers. The activity supports formation of a basic understanding of polymer structures,…
Descriptors: Science Instruction, Hands on Science, Plastics, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Smith, David K. – Journal of Chemical Education, 2014
Social media provide a unique arena in which chemists can communicate directly with an international audience from a wide range of backgrounds. In particular, YouTube offers a rich environment through which students of chemistry and members of the general public can be engaged, and chemophobia can be addressed. This article describes the…
Descriptors: Science Instruction, Social Networks, Educational Technology, Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
O'Dwyer, Anne; Childs, Peter – Journal of Chemical Education, 2014
The main areas of difficulty experienced by those teaching and learning organic chemistry at high school and introductory university level in Ireland have been identified, and the findings support previous studies in Ireland and globally. Using these findings and insights from chemistry education research (CER), the Organic Chemistry in Action!…
Descriptors: Organic Chemistry, Intervention, Introductory Courses, Student Attitudes
Peer reviewed Peer reviewed
Direct linkDirect link
Ochterski, Joseph W. – Journal of Chemical Education, 2014
This article describes the results of using state-of-the-art, research-quality software as a learning tool in a general chemistry secondary school classroom setting. I present three activities designed to introduce fundamental chemical concepts regarding molecular shape and atomic orbitals to students with little background in chemistry, such as…
Descriptors: Science Instruction, Chemistry, Computer Software, Computer Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Ge, Yingbin; Rittenhouse, Robert C.; Buchanan, Jacob C.; Livingston, Benjamin – Journal of Chemical Education, 2014
We have designed an exercise suitable for a lab or project in an undergraduate physical chemistry course that creates a Microsoft Excel spreadsheet to calculate the energy of the S[subscript 0] ground electronic state and the S[subscript 1] and T[subscript 1] excited states of H[subscript 2]. The spreadsheet calculations circumvent the…
Descriptors: Spreadsheets, Equations (Mathematics), Science Instruction, Chemistry
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8