NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Braithwaite, David W.; Tian, Jing; Siegler, Robert S. – Developmental Science, 2018
Many children fail to master fraction arithmetic even after years of instruction. A recent theory of fraction arithmetic (Braithwaite, Pyke, & Siegler, 2017) hypothesized that this poor learning of fraction arithmetic procedures reflects poor conceptual understanding of them. To test this hypothesis, we performed three experiments examining…
Descriptors: Fractions, Addition, Arithmetic, Hypothesis Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Braithwaite, David W.; Siegler, Robert S. – Developmental Science, 2018
Many students' knowledge of fractions is adversely affected by whole number bias, the tendency to focus on the separate whole number components (numerator and denominator) of a fraction rather than on the fraction's magnitude (ratio of numerator to denominator). Although whole number bias appears early in the fraction learning process and under…
Descriptors: Numbers, Bias, Fractions, Age Differences
Peer reviewed Peer reviewed
Direct linkDirect link
Siegler, Robert S. – Developmental Science, 2016
The integrated theory of numerical development posits that a central theme of numerical development from infancy to adulthood is progressive broadening of the types and ranges of numbers whose magnitudes are accurately represented. The process includes four overlapping trends: (1) representing increasingly precisely the magnitudes of non-symbolic…
Descriptors: Numbers, Theories, Individual Development, Symbols (Mathematics)
Peer reviewed Peer reviewed
Direct linkDirect link
Bailey, Drew H.; Siegler, Robert S.; Geary, David C. – Developmental Science, 2014
Recent findings that earlier fraction knowledge predicts later mathematics achievement raise the question of what predicts later fraction knowledge. Analyses of longitudinal data indicated that whole number magnitude knowledge in first grade predicted knowledge of fraction magnitudes in middle school, controlling for whole number arithmetic…
Descriptors: Predictor Variables, Middle School Students, Mathematical Concepts, Mathematics Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Opfer, John E.; Siegler, Robert S.; Young, Christopher J. – Developmental Science, 2011
Barth and Paladino (2011) argue that changes in numerical representations are better modeled by a power function whose exponent gradually rises to 1 than as a shift from a logarithmic to a linear representation of numerical magnitude. However, the fit of the power function to number line estimation data may simply stem from fitting noise generated…
Descriptors: Numbers, Computation, Models, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Siegler, Robert S.; Ramani, Geetha B. – Developmental Science, 2008
The numerical knowledge of children from low-income backgrounds trails behind that of peers from middle-income backgrounds even before the children enter school. This gap may reflect differing prior experience with informal numerical activities, such as numerical board games. Experiment 1 indicated that the numerical magnitude knowledge of…
Descriptors: Games, Number Concepts, Low Income Groups, Educational Games
Peer reviewed Peer reviewed
Direct linkDirect link
Siegler, Robert S.; Chen, Zhe – Developmental Science, 2008
Differentiation and integration played large roles within classic developmental theories but have been relegated to obscurity within contemporary theories. However, they may have a useful role to play in modern theories as well, if conceptualized as guiding principles for analyzing change rather than as real-time mechanisms. In the present study,…
Descriptors: Generalization, Cognitive Development, Child Development, Developmental Stages
Peer reviewed Peer reviewed
Direct linkDirect link
Siegler, Robert S. – Developmental Science, 2007
Children's thinking is highly variable at every level of analysis, from neural and associative levels to the level of strategies, theories, and other aspects of high-level cognition. This variability exists within people as well as between them; individual children often rely on different strategies or representations on closely related problems…
Descriptors: Thinking Skills, Cognitive Processes, Children, Neurological Organization