NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
ERIC Number: ED575341
Record Type: Non-Journal
Publication Date: 2017
Pages: 113
Abstractor: As Provided
ISBN: 978-1-3696-7997-7
ISSN: N/A
EISSN: N/A
Methods and Techniques for Clinical Text Modeling and Analytics
Ling, Yuan
ProQuest LLC, Ph.D. Dissertation, Drexel University
This study focuses on developing and applying methods/techniques in different aspects of the system for clinical text understanding, at both corpus and document level. We deal with two major research questions: First, we explore the question of "How to model the underlying relationships from clinical notes at corpus level?" Documents clustering methods can group clinical notes into meaningful clusters, which can assist physicians and patients to understand medical conditions and diseases from clinical notes. We use Nonnegative Matrix Factorization (NMF) and Multi-view NMF to cluster clinical notes based on extracted medical concepts. The clustering results display latent patterns existed among clinical notes. Our method provides a feasible way to visualize a corpus of clinical documents. Based on extracted concepts, we further build a symptom-medication (Symp-Med) graph to model the Symp-Med relations in clinical notes corpus. We develop two Symp-Med matching algorithms to predict and recommend medications for patients based on their symptoms. Second, we want to solve the question of "How to integrate structured knowledge with unstructured text to improve results for Clinical NLP tasks?" On the one hand, the unstructured clinical text contains lots of information about medical conditions. On the other hand, structured Knowledge Bases (KBs) are frequently used for supporting clinical NLP tasks. We propose graph-regularized word embedding models to integrate knowledge from both KBs and free text. We evaluate our models on standard datasets and biomedical NLP tasks, and results showed encouraging improvements on both datasets. We further apply the graph-regularized word embedding models and present a novel approach to automatically infer the most probable diagnosis from a given clinical narrative. (Abstract shortened by ProQuest.). [The dissertation citations contained here are published with the permission of ProQuest LLC. Further reproduction is prohibited without permission. Copies of dissertations may be obtained by Telephone (800) 1-800-521-0600. Web page: http://www.proquest.com/en-US/products/dissertations/individuals.shtml.]
ProQuest LLC. 789 East Eisenhower Parkway, P.O. Box 1346, Ann Arbor, MI 48106. Tel: 800-521-0600; Web site: http://www.proquest.com/en-US/products/dissertations/individuals.shtml
Publication Type: Dissertations/Theses - Doctoral Dissertations
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A