NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ911662
Record Type: Journal
Publication Date: 2011-Feb
Pages: 23
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-0010-0277
EISSN: N/A
Integrating Conceptual Knowledge within and across Representational Modalities
McNorgan, Chris; Reid, Jackie; McRae, Ken
Cognition, v118 n2 p211-233 Feb 2011
Research suggests that concepts are distributed across brain regions specialized for processing information from different sensorimotor modalities. Multimodal semantic models fall into one of two broad classes differentiated by the assumed hierarchy of convergence zones over which information is integrated. In shallow models, communication within- and between-modality is accomplished using either direct connectivity, or a central semantic hub. In deep models, modalities are connected via cascading integration sites with successively wider receptive fields. Four experiments provide the first direct behavioral tests of these models using speeded tasks involving feature inference and concept activation. Shallow models predict no within-modal versus cross-modal difference in either task, whereas deep models predict a within-modal advantage for feature inference, but a cross-modal advantage for concept activation. Experiments 1 and 2 used relatedness judgments to tap participants' knowledge of relations for within- and cross-modal feature pairs. Experiments 3 and 4 used a dual-feature verification task. The pattern of decision latencies across Experiments 1-4 is consistent with a deep integration hierarchy. (Contains 5 tables and 6 figures.)
Elsevier. 6277 Sea Harbor Drive, Orlando, FL 32887-4800. Tel: 877-839-7126; Tel: 407-345-4020; Fax: 407-363-1354; e-mail: usjcs@elsevier.com; Web site: http://www.elsevier.com
Publication Type: Journal Articles; Reports - Evaluative
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A