NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ904034
Record Type: Journal
Publication Date: 2006
Pages: 9
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1080-4013
EISSN: N/A
Canavan Disease: A White Matter Disorder
Kumar, Shalini; Mattan, Natalia S.; de Vellis, Jean
Mental Retardation and Developmental Disabilities Research Reviews, v12 n2 p157-165 2006
Breakdown of oligodendrocyte-neuron interactions in white matter (WM), such as the loss of myelin, results in axonal dysfunction and hence a disruption of information processing between brain regions. The major feature of leukodystrophies is the lack of proper myelin formation during early development or the onset of myelin loss late in life. These early childhood WM diseases are described as hypomyelination or dysmyelination arising from a primary block in normal myelin synthesis because of a genetic mutation expressed in oligodendrocytes, or failure in myelination secondary to neuronal or astroglial dysfunctions (van der Knaap 2001 Dev. Med. Child Neurol. 43:705-712). Here, we describe the pathophysiological parameters of Canavan disease (CD), caused by genetic mutations of the aspartoacylase ("ASPA") gene, a metabolic enzyme restricted in the central nervous system (CNS) to oligodendrocytes. CD presents pathophysiological dysfunctions similar to diseases caused by myelin gene mutations, such as Pelizaeus-Merzbacher disease (PMD) and several animal models, such as myelin deficient rat (md), jimpy ("jp"), shiverer ("sh"), and quaking ("qk viable") mutant mice. These single gene mutations have pleiotropic effects, whereby the alteration of one myelin gene expression disrupts functional expression of other oligodendrocyte genes with an outcome of hypomyelination/dysmyelination. Among all of the known leukodystrophies, CD is the first disorder, which was approved and tested for the adeno-associated virus vector (AAV)-ASPA gene therapy (Leone et al. 2000 Ann. Neurol. 48:27-38; Janson et al. 2001 Trends Neurosci. 24:706-712) without much success following the first two attempts. "ASPA" gene delivery attempts in animal models have shown a lowering of "N"-acetyl L-aspartate and a change in motor functions, while sponginess of the WM, a characteristic of CD remained unchanged (Matalon et al. 2003 Mol. Ther. 7 (5, Part 1):580-587; McPhee et al. 2005 Brain Res. Mol. Brain Res. 135:112-121) even with better viral serotype and delivery of the gene during early phase of development (Klugmann et al. 2005 Mol. Ther. 11:745-753). While different approaches are being sought for the success of gene therapy, there are pivotal developmental questions to address regarding the specific regions of the CNS and cell lineages that become the target for the onset and progression of CD symptoms from early to late stages of development. (Contains 1 table and 1 figure.)
Wiley-Blackwell. 111 River Street, Hoboken, NJ 07030-5774. Tel: 800-825-7550; Tel: 201-748-6645; Fax: 201-748-6021; e-mail: subinfo@wiley.com; Web site: http://www3.interscience.wiley.com/browse/?type=JOURNAL
Publication Type: Journal Articles; Reports - Evaluative
Education Level: Higher Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A