NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 91 to 105 of 232 results Save | Export
Peer reviewed Peer reviewed
Glickstein, Neil – Science Teacher, 2000
Introduces an integrated unit on scuba science. Studies oxygen in kinetic theory, Boyle's law, Charles's law, Dalton's law, human circulatory and respiratory systems, and diving dangers such as decompression sickness. (YDS)
Descriptors: Biology, Cardiovascular System, Chemistry, Integrated Curriculum
Inner London Education Authority (England). – 1983
This unit on the gaseous state is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit consists of two levels. Level one deals with the distinctive characteristics of gases, then considers the gas laws, in particular the ideal gas equation and its applications. Level two concentrates on…
Descriptors: Chemistry, High Schools, Independent Study, Kinetic Molecular Theory
Peer reviewed Peer reviewed
Bird, R. Byron – Chemical Engineering Education, 1980
Problems in polymer fluid dynamics are described, including development of constitutive equations, rheometry, kinetic theory, flow visualization, heat transfer studies, flows with phase change, two-phase flow, polymer unit operations, and drag reduction. (JN)
Descriptors: Chemistry, Engineering Education, Engineers, Fluid Mechanics
Peer reviewed Peer reviewed
Lin, King-Chuen – Journal of Chemical Education, 1988
Discusses the concept of kinetic versus thermodynamic control of reactions. Explains on the undergraduate level (1) the role of kinetic and thermodynamic control in kinetic equations, (2) the influence of concentration and temperature upon the reaction, and (3) the application of factors one and two to synthetic chemistry. (MVL)
Descriptors: Chemical Equilibrium, Chemical Reactions, Chemistry, College Science
Peer reviewed Peer reviewed
Alexander, John J., Ed. – Journal of Chemical Education, 1983
Acceptable answers are provided for two chemistry questions. The first question is related to the prediction of the appearance of non-first-order proton nuclear magnetic resonance (NMR) spectra. The second question is related to extraterrestrial kinetic theory of gases. (JN)
Descriptors: Chemistry, College Science, Higher Education, Kinetic Molecular Theory
Peer reviewed Peer reviewed
Bauer, S. H. – Journal of Chemical Education, 1986
Proposes a model for kinetic processes said to be similar in computational effort and yielding similar results to conventional transition state theory (TST), while maintaining parsimony and credulity. Argues that partitioning of states into groups be limited to energy space in contrast to TST. (JM)
Descriptors: Chemical Bonding, Chemical Reactions, Chemistry, College Science
Peer reviewed Peer reviewed
Coffman, Joy; Tanis, David O. – Science Teacher, 1990
Presented is an analogy that can be used to explain the particle theory of matter. The three phases of matter are represented by preschoolers, yuppies, and senior citizens. The value of using analogies is discussed. (KR)
Descriptors: Atomic Theory, Chemistry, Diffusion (Physics), Kinetic Molecular Theory
Peer reviewed Peer reviewed
Earl, Boyd L. – Journal of Chemical Education, 1989
Notes that the rigorous kinetic theory, based on the Boltzmann equation, does not yield exact results although some texts claim this to be so. Stresses that they should be presented as approximations with an indication that refinements in the values are possible. (MVL)
Descriptors: Chemistry, College Science, Diffusion (Physics), Inorganic Chemistry
Peer reviewed Peer reviewed
Vollmer, John J. – Journal of Chemical Education, 2000
Describes how to grow crystals of para-dichlorobenzene beginning with household mothballs. The crystals form through sublimation (solid to gas) and deposition (gas to solid). Also discusses demonstrations of evaporation and condensation and odor perception, which can support a study of the kinetic theory and phases of matter. (WRM)
Descriptors: Chemistry, Crystallography, Demonstrations (Science), Diffusion (Physics)
Peer reviewed Peer reviewed
Rogan, John M. – Science Education, 1988
Considers variables which affect the acquisition of the kinetic theory of heat by children who hold alternative viewpoints. Suggests that the articulation of different viewpoints in no way hinders the acquisition of the desired conceptual framework. Emphasizes the benefit to low-reasoning students in particular. (CW)
Descriptors: Cognitive Structures, Concept Formation, Heat, Kinetic Molecular Theory
Peer reviewed Peer reviewed
Walton, Alan J. – Physics Education, 1977
Traditional undergraduate courses in gas kinetic theory encourage the view that in all collisions between a gas atom and a surface, the angle of incidence of the gas atom equals its angle of reflection. This article illustrates and explains the incorrectness in assuming specular reflection and zero dwell time. (Author/MA)
Descriptors: Atomic Theory, Higher Education, Instruction, Instructional Materials
Peer reviewed Peer reviewed
Hall, L.; Goberdhansingh, A. – Journal of Chemical Education, 1988
Describes a simple redox reaction that occurs between potassium permanganate and oxalic acid that can be used to prepare an interesting disappearing ink for demonstrating kinetics for introductory chemistry. Discusses laboratory procedures and factors that influence disappearance times. (CW)
Descriptors: Chemical Reactions, Chemistry, College Science, Demonstrations (Educational)
Daniel, Army; And Others – 1971
This booklet is both a teacher's manual and a student's manual in a series of booklets that make up the core of a Physical Science course designed for the freshman year of college and used by teachers in the 27 colleges participating in the Thirteen College Curriculum Program. This program is a curriculum revision project in support of 13…
Descriptors: Black Colleges, College Science, Curriculum, Curriculum Development
Peer reviewed Peer reviewed
Barbara, Thomas M.; Corio, P. L. – Journal of Chemical Education, 1980
Presents a method for obtaining all mass conservation conditions implied by a given mechanism in which the conditions are used to simplify integration of the rate equations and to derive stoichiometric relations. Discusses possibilities of faulty inference of kinetic information from a given stoichiometry. (CS)
Descriptors: Chemistry, College Science, Higher Education, Kinetic Molecular Theory
Plumb, Robert C. – J Chem Educ, 1970
This is the first of a new series of brief ancedotes about materials and phenomena which exemplify chemical principles. Examples include (1) the sea-lab experiment illustrating principles of the kinetic theory of gases, (2) snow-making machines illustrating principles of thermodynamics in gas expansions and phase changes, and (3) sunglasses that…
Descriptors: Chemical Equilibrium, Chemistry, Kinetic Molecular Theory, Optics
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  16