NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1106309
Record Type: Journal
Publication Date: 2016
Pages: 16
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1470-8175
Structure Prediction and Analysis of Neuraminidase Sequence Variants
Thayer, Kelly M.
Biochemistry and Molecular Biology Education, v44 n4 p361-376 Jul-Aug 2016
Analyzing protein structure has become an integral aspect of understanding systems of biochemical import. The laboratory experiment endeavors to introduce protein folding to ascertain structures of proteins for which the structure is unavailable, as well as to critically evaluate the quality of the prediction obtained. The model system used is the highly mutable influenza virus protein neuraminidase, which is the key target in the development of therapeutics. In light of recent pandemics, understanding how mutations confer drug resistance, which translates at the molecular level to understanding how different sequence variants differ, constitutes an area of great interest because of the ramifications in public health. This lab targets upper level undergraduate biochemistry students, and aims to introduce tools to be used to explore protein folding and protein visualization in the context of the neuraminidase case study. Students proceed to critically evaluate the folded models by comparison with crystallographic structures. When validity is established, they fold a neuraminidase sequence for which a structure is not available. Through structural alignment and visual inspection of the 150 loop, students gain molecular insight into two possible conformations of the protein, which are actively being studied. Folding the third chosen sequence mimics a true research environment in allowing students to generate a structure from a sequence for which a structure was not previously available, and to assess whether their particular variant has an open or closed loop. From this vantage, they are then challenged to speculate about the connection between loop conformation and drug susceptibility.
Wiley-Blackwell. 350 Main Street, Malden, MA 02148. Tel: 800-835-6770; Tel: 781-388-8598; Fax: 781-388-8232; e-mail: cs-journals@wiley.com; Web site: http://www.wiley.com/WileyCDA
Publication Type: Journal Articles; Reports - Descriptive
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A