NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20240
Since 20230
Since 2020 (last 5 years)0
Since 2015 (last 10 years)11
Since 2005 (last 20 years)21
Source
Teaching Science21
Audience
Teachers5
Laws, Policies, & Programs
Assessments and Surveys
Program for International…1
What Works Clearinghouse Rating
Showing 1 to 15 of 21 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Lim, Kieran F. – Teaching Science, 2019
The use of the valence-shell electron-pair repulsion (VSEPR) model is essential for understanding aspects of bonding, molecular dipoles, inorganic complex ions, isomerization and stereochemistry, the lock-and-key mechanism for enzyme activity, and many other ideas. This paper describes how different approaches can be used to help students learn…
Descriptors: Science Instruction, Teaching Methods, Molecular Structure, Secondary School Science
Peer reviewed Peer reviewed
Direct linkDirect link
Tho, Siew Wei; Lee, Tien Tien; Baharom, Sadiah – Teaching Science, 2018
Trends in contemporary science education emphasise the benefits of out-of-school learning experiences to help schools link science with everyday life (Tho, Chan, & Yeung, 2015). With the help of state-of-the-art technology, mobile devices--particularly smartphones--have the ability to work as data-logging tools for students to perform…
Descriptors: Educational Technology, Technology Uses in Education, Telecommunications, Handheld Devices
Peer reviewed Peer reviewed
Direct linkDirect link
Rizik, Nadya; Taylor, Subhashni; Taylor, Neil; Sharma, Manjula – Teaching Science, 2018
Energy is one of the most complex yet central concepts taught in schools and is featured in the Australian Science Curriculum, as one of the six key organising ideas (Australian Curriculum, Assessment and Reporting Authority (ACARA), 2015). The literature portrays a multitude of complications associated with teaching energy (see Millar, 2005 for a…
Descriptors: Foreign Countries, Energy, Science Instruction, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Dale, Keith; Dale, Stephen G. – Teaching Science, 2018
The Australian Curriculum (n.d.) describes chemistry as having three interrelated strands, Science Inquiry Skills, Science as a Human Endeavour and Science Understanding. It also states "... the three strands of the Australian Curriculum: Science should be taught in an integrated way". This article will explore a model for integrating…
Descriptors: Foreign Countries, Science Instruction, Secondary School Science, Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Koul, Anjni – Teaching Science, 2017
This article presents an instructional strategy called Premise-Reasoning- Outcome (PRO) designed to support students in the construction of scientific explanations. Informed by the philosophy of science and linguistic studies of science, the PRO strategy involves identifying three components of a scientific explanation: (i) premise--an accepted…
Descriptors: Educational Strategies, Science Instruction, Science Education, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Smith, Tim – Teaching Science, 2016
Originally called Cognitive Acceleration through Science Education, Thinking Science is a program of 30 lessons, usually delivered in Years 7 and 8, that has been shown to improve learner outcomes in science, maths and English. Over recent years, it has grown in popularity in Australia and was the subject of an ARC-funded research project at the…
Descriptors: Teaching Methods, Cognitive Development, Science Education, Foreign Countries
Peer reviewed Peer reviewed
Direct linkDirect link
Kin, Ng Hong; Ling, Tan Aik – Teaching Science, 2016
The concept of specificity of enzyme action can potentially be abstract for some students as they fail to appreciate how the three-dimensional configuration of enzymes and the active sites confer perfect fit for specific substrates. In science text books, the specificity of enzyme-substrate binding is typically likened to the action of a lock and…
Descriptors: Science Instruction, Scientific Concepts, Teaching Methods, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Tang, Kok-Sing – Teaching Science, 2015
This article presents an instructional strategy called Premise-Reasoning-Outcome (PRO) designed to support students in the construction of scientific explanations. Informed by the philosophy of science and linguistic studies of science, the PRO strategy involves identifying three components of a scientific explanation: (i) premise--an accepted…
Descriptors: Educational Strategies, Science Instruction, Science Education, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
McRae, Mike – Teaching Science, 2015
This article is written for primary and high school students, and provides a way to introduce kids to science and the concept of gravity.
Descriptors: Science Instruction, Science Activities, Elementary School Science, Secondary School Science
Peer reviewed Peer reviewed
Direct linkDirect link
King, Donna; Ginns, Ian – Teaching Science, 2015
Engaging middle school students in science continues to be a challenge in Australian schools. One initiative that has been tried in the senior years but is a more recent development in the middle years is the context-based approach. In this ethnographic study, we researched the teaching and learning transactions that occurred in one ninth grade…
Descriptors: Middle School Students, Learner Engagement, Ethnography, Grade 9
Peer reviewed Peer reviewed
Direct linkDirect link
Hill, Matthew; Sharma, Manjula – Teaching Science, 2015
The ability to represent the world like a scientist is difficult to teach; it is more than simply knowing the representations (e.g., graphs, words, equations and diagrams). For meaningful science learning to take place, consideration needs to be given to explicitly integrating representations into instructional methods, linked to the content, and…
Descriptors: Science Instruction, Worksheets, Teaching Methods, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Geelan, David; Mahaffy, Peter; Mukherjee, Michelle – Teaching Science, 2014
Scientific visualisations such as computer-based animations and simulations are increasingly a feature of high school Science instruction. Visualisations are adopted enthusiastically by teachers and embraced by students, and there is good evidence that they are popular and well received. There is limited evidence, however, of how effective they…
Descriptors: Visualization, Chemistry, Scientific Concepts, High Schools
Peer reviewed Peer reviewed
Direct linkDirect link
Bunten, Rod; Dawson, Vaille – Teaching Science, 2014
This paper argues that, despite its difficulties, climate change can (and perhaps needs to) be taught rigorously to students by enquiry rather than through transmission and that such a method will enable students to make judgments on other issues of scientific controversy. It examines the issues and barriers to the teaching of climate change,…
Descriptors: Climate, Secondary School Science, Grade 11, Grade 12
Peer reviewed Peer reviewed
Direct linkDirect link
Gokalp, Muhammed Sait; Sharma, Manjula; Johnston, Ian; Sharma, Mia – Teaching Science, 2013
The purpose of this study was to investigate how WebQuests can be used in physics classes for teaching specific concepts. The study had three stages. The first stage was to develop a WebQuest on Newton's second law. The second stage involved developing a lesson plan to implement the WebQuest in class. In the final stage, the WebQuest was…
Descriptors: Web Based Instruction, Curriculum Implementation, Investigations, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Davis, James – Teaching Science, 2013
This paper is a qualitative, practice based study describing the use of the Focus-Action-Reflection (FAR) Guide (Harrison & Treagust, 2000) to address the shortcomings of a pedagogical analogical model in Year 10 Science. The aim of this paper is to present my experience of the FAR Guide in relation to an analogical model that gave rise to…
Descriptors: Grade 10, Qualitative Research, Science Instruction, Teaching Experience
Previous Page | Next Page ยป
Pages: 1  |  2