NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Teresa M. Ober; Ying Cheng; Meghan R. Coggins; Paul Brenner; Janice Zdankus; Philip Gonsalves; Emmanuel Johnson; Tim Urdan – Computer Science Education, 2024
Background and Context: Differences in children's and adolescents' initial attitudes about computing and other STEM fields may form during middle school and shape decisions leading to career entry. Early emerging differences in career interest may propagate a lack of diversity in computer science and programming fields. Objective: Though middle…
Descriptors: Middle School Students, Student Attitudes, Computer Science Education, STEM Education
Peer reviewed Peer reviewed
Direct linkDirect link
Vandenberg, Jessica; Lynch, Collin; Boyer, Kristy Elizabeth; Wiebe, Eric – Computer Science Education, 2023
Background and Context: Students' self-efficacy toward computing affect their participation in related tasks and courses. Self-efficacy is likely influenced by students' initial experiences and exposure to computer science (CS) activities. Moreover, student interest in a subject likely informs their ability to effectively regulate their learning…
Descriptors: Elementary School Students, Cooperative Learning, Programming, Network Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Zdawczyk, Christina; Varma, Keisha – Computer Science Education, 2023
Background and Context: A continued gender disparity has driven a need for effective interventions for recruiting girls to computer science. Prior research has demonstrated that middle school girls hold beliefs and attitudes that keep them from learning computer science, which can be mitigated through classroom design. Objective: This study…
Descriptors: Females, Computer Science Education, Gender Differences, Student Attitudes
Peer reviewed Peer reviewed
Direct linkDirect link
Finke, Sabrina; Kemény, Ferenc; Sommer, Markus; Krnjic, Vesna; Arendasy, Martin; Slany, Wolfgang; Landerl, Karin – Computer Science Education, 2022
Background: Key to optimizing Computational Thinking (CT) instruction is a precise understanding of the underlying cognitive skills. Román-González et al. (2017) reported unique contributions of spatial abilities and reasoning, whereas arithmetic was not significantly related to CT. Disentangling the influence of spatial and numerical skills on CT…
Descriptors: Spatial Ability, Cognitive Ability, Abstract Reasoning, Arithmetic
Peer reviewed Peer reviewed
Direct linkDirect link
Basu, Satabdi; Rutstein, Daisy W.; Xu, Yuning; Wang, Haiwen; Shear, Linda – Computer Science Education, 2021
Background and Context: In today's increasingly digital world, it is critical that all students learn to think computationally from an early age. Assessments of Computational Thinking (CT) are essential for capturing information about student learning and challenges. When programming is used as a vehicle to foster CT skills, assessment of CT…
Descriptors: Computer Science Education, Programming, Thinking Skills, Logical Thinking
Peer reviewed Peer reviewed
Direct linkDirect link
Israel, Maya; Chung, Moon Y.; Wherfel, Quentin M.; Shehab, Saddeddine – Computer Science Education, 2020
Background and Context: Elementary computer science (CS) can be engaging and challenging for some students with disabilities who struggle with complex problem solving. Objective: This study examined academic engagement of students with autism spectrum disorder (ASD) in elementary CS instruction. Method: A mixed methods case study was used to study…
Descriptors: Elementary School Students, Computer Science Education, Autism, Pervasive Developmental Disorders
Peer reviewed Peer reviewed
Direct linkDirect link
Borge, Marcela; Toprani, Dhvani; Yan, Shulong; Xia, Yu – Computer Science Education, 2020
Background and Context: in this paper, we argue that integrating Human-Computer Interaction (HCI) into K-12 computing education can present learners with opportunities to develop human-centered design skills as well as higher-order thinking skills. Objective: to address the issues related to the development of HCI forms of expertise, we introduce…
Descriptors: Elementary Secondary Education, Design, Skill Development, Thinking Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Grover, Shuchi; Jackiw, Nicholas; Lundh, Patrik – Computer Science Education, 2019
Background and Context: Learners struggle with conceptual understanding of introductory programming concepts such as variables, expressions, and loops. Objective: We examine whether and how designed activities for conceptual exploration support preliminary engagement with and learning of foundational and often hard-to-grasp programming concepts…
Descriptors: Middle School Students, Concept Formation, Learning Activities, Grade 6
Peer reviewed Peer reviewed
Direct linkDirect link
Xu, Zhen; Ritzhaupt, Albert D.; Tian, Fengchun; Umapathy, Karthikeyan – Computer Science Education, 2019
Background and Context: The use of block-based programming environments is purported to be a good way to gently introduce novice computer programmers to computer programming. A small, but growing body of research examines the differences between block-based and text-based programming environments. Objective: Thus, the purpose of this study was to…
Descriptors: Outcomes of Education, Novices, Computer Science Education, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Friend, Michelle – Computer Science Education, 2015
Experience is necessary but not sufficient to cause girls to envision a future career in computing. This study investigated the experiences and attitudes of girls who had taken three years of mandatory computer science classes in an all-girls setting in middle school, measured at the end of eighth grade. The one third of participants who were open…
Descriptors: Middle School Students, Females, Computer Science Education, Student Attitudes