NotesFAQContact Us
Collection
Advanced
Search Tips
Source
Computer Science Education23
Audience
Laws, Policies, & Programs
Assessments and Surveys
Draw a Person Test1
What Works Clearinghouse Rating
Showing 1 to 15 of 23 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Teresa M. Ober; Ying Cheng; Meghan R. Coggins; Paul Brenner; Janice Zdankus; Philip Gonsalves; Emmanuel Johnson; Tim Urdan – Computer Science Education, 2024
Background and Context: Differences in children's and adolescents' initial attitudes about computing and other STEM fields may form during middle school and shape decisions leading to career entry. Early emerging differences in career interest may propagate a lack of diversity in computer science and programming fields. Objective: Though middle…
Descriptors: Middle School Students, Student Attitudes, Computer Science Education, STEM Education
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Joey; Parker, Miranda C. – Computer Science Education, 2023
Background and Context: Computational thinking (CT) is a critical part of computing education in middle school. The existing practices of collaboration and collaborative design activities at this education level pairs well with CT practices, but this interaction has previously been under-explored in the existing literature. Objective: In this…
Descriptors: Computation, Thinking Skills, Cooperative Learning, Skill Development
Peer reviewed Peer reviewed
Direct linkDirect link
Vandenberg, Jessica; Lynch, Collin; Boyer, Kristy Elizabeth; Wiebe, Eric – Computer Science Education, 2023
Background and Context: Students' self-efficacy toward computing affect their participation in related tasks and courses. Self-efficacy is likely influenced by students' initial experiences and exposure to computer science (CS) activities. Moreover, student interest in a subject likely informs their ability to effectively regulate their learning…
Descriptors: Elementary School Students, Cooperative Learning, Programming, Network Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Zdawczyk, Christina; Varma, Keisha – Computer Science Education, 2023
Background and Context: A continued gender disparity has driven a need for effective interventions for recruiting girls to computer science. Prior research has demonstrated that middle school girls hold beliefs and attitudes that keep them from learning computer science, which can be mitigated through classroom design. Objective: This study…
Descriptors: Females, Computer Science Education, Gender Differences, Student Attitudes
Peer reviewed Peer reviewed
Direct linkDirect link
Finke, Sabrina; Kemény, Ferenc; Sommer, Markus; Krnjic, Vesna; Arendasy, Martin; Slany, Wolfgang; Landerl, Karin – Computer Science Education, 2022
Background: Key to optimizing Computational Thinking (CT) instruction is a precise understanding of the underlying cognitive skills. Román-González et al. (2017) reported unique contributions of spatial abilities and reasoning, whereas arithmetic was not significantly related to CT. Disentangling the influence of spatial and numerical skills on CT…
Descriptors: Spatial Ability, Cognitive Ability, Abstract Reasoning, Arithmetic
Peer reviewed Peer reviewed
Direct linkDirect link
Petrie, Christopher – Computer Science Education, 2022
Background and Context: Computational Thinking (CT) has been recently integrated into new and revised Digital Technologies content (DTC) in the Technology learning area of the New Zealand School Curriculum. Objective: To aid this change, this research examined how CT supports learning outcomes in both music and programming with the Sonic Pi…
Descriptors: Interdisciplinary Approach, Outcomes of Education, Computer Science Education, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Basu, Satabdi; Rutstein, Daisy W.; Xu, Yuning; Wang, Haiwen; Shear, Linda – Computer Science Education, 2021
Background and Context: In today's increasingly digital world, it is critical that all students learn to think computationally from an early age. Assessments of Computational Thinking (CT) are essential for capturing information about student learning and challenges. When programming is used as a vehicle to foster CT skills, assessment of CT…
Descriptors: Computer Science Education, Programming, Thinking Skills, Logical Thinking
Peer reviewed Peer reviewed
Direct linkDirect link
Lachney, Michael; Bennett, Audrey G.; Eglash, Ron; Yadav, Aman; Moudgalya, Sukanya – Computer Science Education, 2021
Background: As teachers work to broaden the participation of racially and ethnically underrepresented groups in computer science (CS), culturally responsive computing (CRC) becomes more pertinent to formal settings. Objective: Yet, equity-oriented literature offers limited guidance for developing deep forms of CRC in the classroom. In response, we…
Descriptors: Culturally Relevant Education, Computer Science Education, Equal Education, Case Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Wanzer, Dana Linnell; McKlin, Tom; Freeman, Jason; Magerko, Brian; Lee, Taneisha – Computer Science Education, 2020
Background and Context: EarSketch was developed as a program to foster persistence in computer science with diverse student populations. Objective: To test the effectiveness of EarSketch in promoting intentions to persist, particularly among female students and under-represented minority students. Method: Meta-analyses, structural equation…
Descriptors: Intention, Student Participation, Persistence, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Vogel, Sara; Hoadley, Christopher; Castillo, Ana Rebeca; Ascenzi-Moreno, Laura – Computer Science Education, 2020
Background and Context: In this theory paper, we explore the concept of translanguaging from bilingual education, and its implications for teaching and learning programming and computing in especially computer science (CS) for all initiatives. Objective: We use translanguaging to examine how programming is and isn't like using human languages. We…
Descriptors: Bilingual Education, Code Switching (Language), Computer Science Education, Programming Languages
Peer reviewed Peer reviewed
Direct linkDirect link
Israel, Maya; Chung, Moon Y.; Wherfel, Quentin M.; Shehab, Saddeddine – Computer Science Education, 2020
Background and Context: Elementary computer science (CS) can be engaging and challenging for some students with disabilities who struggle with complex problem solving. Objective: This study examined academic engagement of students with autism spectrum disorder (ASD) in elementary CS instruction. Method: A mixed methods case study was used to study…
Descriptors: Elementary School Students, Computer Science Education, Autism, Pervasive Developmental Disorders
Peer reviewed Peer reviewed
Direct linkDirect link
Dahn, Maggie; DeLiema, David – Computer Science Education, 2020
Background and Context: Women are underrepresented in the field of computer science, a trend that in part can be traced to girls' early experiences with the discipline. Objective: Our aim is to show how three girls who became strong coders talked about their debugging practice at the intersection of problem solving, emotion, and identity. Method:…
Descriptors: Psychological Patterns, Problem Solving, Identification (Psychology), Females
Peer reviewed Peer reviewed
Direct linkDirect link
Campe, Shannon; Denner, Jill; Green, Emily; Torres, David – Computer Science Education, 2020
Background and Context: Pair programming is used in classrooms to promote learning and engage a more diverse group of students in computing fields, but little is known about what it looks like in middle school. Objective: The aim of this study was to examine how programming pairs were interacting and about what. Method: Video, audio, and screen…
Descriptors: Cooperative Learning, Programming, Computer Science Education, Middle School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Borge, Marcela; Toprani, Dhvani; Yan, Shulong; Xia, Yu – Computer Science Education, 2020
Background and Context: in this paper, we argue that integrating Human-Computer Interaction (HCI) into K-12 computing education can present learners with opportunities to develop human-centered design skills as well as higher-order thinking skills. Objective: to address the issues related to the development of HCI forms of expertise, we introduce…
Descriptors: Elementary Secondary Education, Design, Skill Development, Thinking Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Grover, Shuchi; Jackiw, Nicholas; Lundh, Patrik – Computer Science Education, 2019
Background and Context: Learners struggle with conceptual understanding of introductory programming concepts such as variables, expressions, and loops. Objective: We examine whether and how designed activities for conceptual exploration support preliminary engagement with and learning of foundational and often hard-to-grasp programming concepts…
Descriptors: Middle School Students, Concept Formation, Learning Activities, Grade 6
Previous Page | Next Page »
Pages: 1  |  2