NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 16 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Nicola A. Kiernan; Andrew Manches; Michael K. Seery – Chemistry Education Research and Practice, 2024
Central to conceptual understanding of STEM disciplines is visuospatial processing. Despite its acknowledged role in assuring learners' success, less is known about the underlying reasoning students must employ when solving 3-D problems and the ways in which gaining an understanding of this can inform formative assessment and learning in STEM…
Descriptors: Logical Thinking, Chemistry, Scientific Concepts, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Wan, Yanlan; Yao, Ruoqing; Li, Qi; Bi, Hualin – Chemistry Education Research and Practice, 2023
Critical thinking, a rational and open higher-order thinking mode in human cognition, is becoming imperative to success in modern life. Therefore, cultivating students' critical thinking has become a common goal of education reform worldwide. Teachers play a crucial role in cultivating students' critical thinking. However, existing studies have…
Descriptors: Foreign Countries, Middle School Teachers, Chemistry, Science Teachers
Peer reviewed Peer reviewed
Direct linkDirect link
Lieber, Leonie; Graulich, Nicole – Chemistry Education Research and Practice, 2022
Building scientific arguments is a central ability for all scientists regardless of their specific domain. In organic chemistry, building arguments is a necessary skill to estimate reaction processes in consideration of the reactivities of reaction centres or the chemical and physical properties. Moreover, building arguments for multiple reaction…
Descriptors: Chemistry, Science Instruction, Organic Chemistry, Persuasive Discourse
Peer reviewed Peer reviewed
Direct linkDirect link
Kiernan, Nicola A.; Manches, Andrew; Seery, Michael K. – Chemistry Education Research and Practice, 2021
Visuospatial thinking is considered crucial for understanding of three-dimensional spatial concepts in STEM disciplines. Despite their importance, little is known about the underlying cognitive processing required to spatially reason and the varied strategies students may employ to solve visuospatial problems. This study seeks to identify and…
Descriptors: Visual Perception, Spatial Ability, Cognitive Processes, Thinking Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Petterson, Michael N.; Watts, Field M.; Snyder-White, Emma P.; Archer, Sabrina R.; Shultz, Ginger V.; Finkenstaedt-Quinn, Solaire A. – Chemistry Education Research and Practice, 2020
An understanding of acid-base reactions is necessary for success in chemistry courses and relevant to careers outside of chemistry, yet research has demonstrated that students often struggle with learning acid-base reaction mechanisms in organic chemistry. One response to this challenge is the development of educational applications to support…
Descriptors: Organic Chemistry, Problem Solving, Logical Thinking, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Rodriguez, Jon-Marc G.; Bain, Kinsey; Hux, Nicholas P.; Towns, Marcy H. – Chemistry Education Research and Practice, 2019
Problem solving is a critical feature of highly quantitative physical science topics, such as chemical kinetics. In order to solve a problem, students must cue into relevant features, ignore irrelevant features, and choose among potential problem-solving approaches. However, what is considered appropriate or productive for problem solving is…
Descriptors: Science Instruction, Problem Solving, Chemistry, Kinetics
Peer reviewed Peer reviewed
Direct linkDirect link
DeCocq, Victoria; Bhattacharyya, Gautam – Chemistry Education Research and Practice, 2019
We report our qualitative study of twenty-four students enrolled in the second-semester of a second-year undergraduate (sophomore-level) organic chemistry course, Organic Two. We asked the research participants to propose the product and electron-pushing mechanism of elementary mechanistic steps in the absence and presence of the corresponding…
Descriptors: Organic Chemistry, Undergraduate Students, College Science, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Caspari, I.; Weinrich, M. L.; Sevian, H.; Graulich, N. – Chemistry Education Research and Practice, 2018
If an organic chemistry student explains that she represents a mechanistic step because ''it's a productive part of the mechanism,'' what meaning could the professor teaching the class attribute to this statement, what is actually communicated, and what does it mean for the student? The professor might think that the explanation is based on…
Descriptors: Organic Chemistry, Abstract Reasoning, Science Process Skills, Scientific Attitudes
Peer reviewed Peer reviewed
Direct linkDirect link
Bain, Kinsey; Rodriguez, Jon-Marc G.; Moon, Alena; Towns, Marcy H. – Chemistry Education Research and Practice, 2018
Chemical kinetics is a highly quantitative content area that involves the use of multiple mathematical representations to model processes and is a context that is under-investigated in the literature. This qualitative study explored undergraduate student integration of chemistry and mathematics during problem solving in the context of chemical…
Descriptors: Chemistry, Science Instruction, Qualitative Research, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Akkuzu, Nalan; Uyulgan, Melis Arzu – Chemistry Education Research and Practice, 2017
The current study examines the performance and achievement of students in the Systematic Qualitative Analyses of Cations (SQACs). We sought answers to questions such as, "What are the students' levels of performance?" and "What is the relation between the average scores for performance and achievement?." This was done by using…
Descriptors: Foreign Countries, Qualitative Research, Science Achievement, Inquiry
Peer reviewed Peer reviewed
Direct linkDirect link
Moon, A.; Stanford, C.; Cole, R.; Towns, M. – Chemistry Education Research and Practice, 2016
Recent science education reform efforts have emphasized scientific practices in addition to scientific knowledge. Less work has been done at the tertiary level to consider students' engagement in scientific practices. In this work, we consider physical chemistry students' engagement in argumentation and construction of causal explanations.…
Descriptors: Science Instruction, Chemistry, Video Technology, Thermodynamics
Peer reviewed Peer reviewed
Direct linkDirect link
Graulich, Nicole – Chemistry Education Research and Practice, 2015
Organic chemistry education is one of the youngest research areas among all chemistry related research efforts, and its published scholarly work has become vibrant and diverse over the last 15 years. Research on problem-solving behavior, students' use of the arrow-pushing formalism, the investigation of students' conceptual knowledge and…
Descriptors: Organic Chemistry, Science Instruction, Scientific Concepts, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Sevian, H.; Bernholt, S.; Szteinberg, G. A.; Auguste, S.; Pérez, L. C. – Chemistry Education Research and Practice, 2015
A perspective is presented on how the representation mapping framework by Hahn and Chater (1998) may be used to characterize reasoning during problem solving in chemistry. To provide examples for testing the framework, an exploratory study was conducted with students and professors from three different courses in the middle of the undergraduate…
Descriptors: Chemistry, Science Instruction, Problem Solving, Undergraduate Study
Peer reviewed Peer reviewed
Direct linkDirect link
Christian, Karen; Talanquer, Vicente – Chemistry Education Research and Practice, 2012
Characterizing the modes of reasoning typically applied by students to solve different types of chemistry problems is of central importance for the design of instructional strategies that can better support their learning of specific content. Thus, the central goal of this study was to identify dominant modes of reasoning expressed by college…
Descriptors: Organic Chemistry, College Students, Problem Solving, Logical Thinking
Peer reviewed Peer reviewed
Direct linkDirect link
Stamovlasis, Dimitrios – Chemistry Education Research and Practice, 2010
The aim of the present paper is two-fold. First, it attempts to support previous findings on the role of some psychometric variables, such as, M-capacity, the degree of field dependence-independence, logical thinking and the mobility-fixity dimension, on students' achievement in chemistry problem solving. Second, the paper aims to raise some…
Descriptors: Chemistry, Problem Solving, Robustness (Statistics), Multiple Regression Analysis
Previous Page | Next Page »
Pages: 1  |  2