Publication Date
| In 2024 | 3 |
| Since 2023 | 16 |
| Since 2020 (last 5 years) | 40 |
| Since 2015 (last 10 years) | 265 |
| Since 2005 (last 20 years) | 301 |
Descriptor
Source
| Grantee Submission | 301 |
Author
| McNamara, Danielle S. | 15 |
| Smolkowski, Keith | 11 |
| Clarke, Ben | 10 |
| Fien, Hank | 10 |
| Doabler, Christian T. | 9 |
| Baker, Scott K. | 8 |
| Zhang, Zhiyong | 8 |
| Allen, Laura K. | 7 |
| Seeley, John R. | 7 |
| Small, Jason W. | 7 |
| Walker, Hill M. | 7 |
| More ▼ | |
Publication Type
Education Level
Audience
| Researchers | 2 |
| Teachers | 1 |
Location
| Oregon | 12 |
| California | 11 |
| Florida | 8 |
| Kentucky | 7 |
| Texas | 7 |
| Indiana | 5 |
| Pennsylvania | 5 |
| Tennessee | 5 |
| North Carolina | 4 |
| Massachusetts (Boston) | 3 |
| Virginia | 3 |
| More ▼ | |
Laws, Policies, & Programs
| Individuals with Disabilities… | 3 |
| Aid to Families with… | 1 |
| Individuals with Disabilities… | 1 |
| No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
| Meets WWC Standards without Reservations | 9 |
| Meets WWC Standards with or without Reservations | 14 |
| Does not meet standards | 5 |
Ziqian Xu; Fei Gao; Anqi Fa; Wen Qu; Zhiyong Zhang – Grantee Submission, 2024
Conditional process models, including moderated mediation models and mediated moderation models, are widely used in behavioral science research. However, few studies have examined approaches to conduct statistical power analysis for such models and there is also a lack of software packages that provide such power analysis functionalities. In this…
Descriptors: Statistical Analysis, Sample Size, Mediation Theory, Monte Carlo Methods
Nianbo Dong; Benjamin Kelcey; Jessaca Spybrook; Yanli Xie; Dung Pham; Peilin Qiu; Ning Sui – Grantee Submission, 2024
Multisite trials that randomize individuals (e.g., students) within sites (e.g., schools) or clusters (e.g., teachers/classrooms) within sites (e.g., schools) are commonly used for program evaluation because they provide opportunities to learn about treatment effects as well as their heterogeneity across sites and subgroups (defined by moderating…
Descriptors: Statistical Analysis, Randomized Controlled Trials, Educational Research, Effect Size
Sarah Narvaiz; Qinyun Lin; Joshua M. Rosenberg; Kenneth A. Frank; Spiro J. Maroulis; Wei Wang; Ran Xu – Grantee Submission, 2024
Sensitivity analysis, a statistical method crucial for validating inferences across disciplines, quantifies the conditions that could alter conclusions (Razavi et al., 2021). One line of work is rooted in linear models and foregrounds the sensitivity of inferences to the strength of omitted variables (Cinelli & Hazlett, 2019; Frank, 2000). A…
Descriptors: Statistical Analysis, Computer Software, Robustness (Statistics), Statistical Inference
Lin, Qinyun; Nuttall, Amy K.; Zhang, Qian; Frank, Kenneth A. – Grantee Submission, 2023
Empirical studies often demonstrate multiple causal mechanisms potentially involving simultaneous or causally related mediators. However, researchers often use simple mediation models to understand the processes because they do not or cannot measure other theoretically relevant mediators. In such cases, another potentially relevant but unobserved…
Descriptors: Causal Models, Mediation Theory, Error of Measurement, Statistical Inference
Frank, Kenneth A.; Lin, Qinyun; Xu, Ran; Maroulis, Spiro; Mueller, Anna – Grantee Submission, 2023
Social scientists seeking to inform policy or public action must carefully consider how to identify effects and express inferences because actions based on invalid inferences will not yield the intended results. Recognizing the complexities and uncertainties of social science, we seek to inform inevitable debates about causal inferences by…
Descriptors: Social Sciences, Research Methodology, Statistical Inference, Robustness (Statistics)
Kenneth Tyler Wilcox; Ross Jacobucci; Zhiyong Zhang; Brooke A. Ammerman – Grantee Submission, 2023
Text is a burgeoning data source for psychological researchers, but little methodological research has focused on adapting popular modeling approaches for text to the context of psychological research. One popular measurement model for text, topic modeling, uses a latent mixture model to represent topics underlying a body of documents. Recently,…
Descriptors: Bayesian Statistics, Content Analysis, Undergraduate Students, Self Destructive Behavior
Xu Qin; Lijuan Wang – Grantee Submission, 2023
Research questions regarding how, for whom, and where a treatment achieves its effect on an outcome have become increasingly valued in substantive research. Such questions can be answered by causal moderated mediation analysis, which assesses the heterogeneity of the mediation mechanism underlying the treatment effect across individual and…
Descriptors: Causal Models, Mediation Theory, Computer Software, Statistical Analysis
Clintin P. Davis-Stober; Jason Dana; David Kellen; Sara D. McMullin; Wes Bonifay – Grantee Submission, 2023
Conducting research with human subjects can be difficult because of limited sample sizes and small empirical effects. We demonstrate that this problem can yield patterns of results that are practically indistinguishable from flipping a coin to determine the direction of treatment effects. We use this idea of random conclusions to establish a…
Descriptors: Research Methodology, Sample Size, Effect Size, Hypothesis Testing
Peter M. Steiner; Patrick Sheehan; Vivian C. Wong – Grantee Submission, 2023
Given recent evidence challenging the replicability of results in the social and behavioral sciences, critical questions have been raised about appropriate measures for determining replication success in comparing effect estimates across studies. At issue is the fact that conclusions about replication success often depend on the measure used for…
Descriptors: Replication (Evaluation), Measurement Techniques, Statistical Analysis, Effect Size
Dan Soriano; Eli Ben-Michael; Peter Bickel; Avi Feller; Samuel D. Pimentel – Grantee Submission, 2023
Assessing sensitivity to unmeasured confounding is an important step in observational studies, which typically estimate effects under the assumption that all confounders are measured. In this paper, we develop a sensitivity analysis framework for balancing weights estimators, an increasingly popular approach that solves an optimization problem to…
Descriptors: Statistical Analysis, Computation, Mathematical Formulas, Monte Carlo Methods
Eric C. Hedberg – Grantee Submission, 2023
In cluster randomized evaluations, a treatment or intervention is randomly assigned to a set of clusters each with constituent individual units of observations (e.g., student units that attend schools, which are assigned to treatment). One consideration of these designs is how many units are needed per cluster to achieve adequate statistical…
Descriptors: Statistical Analysis, Multivariate Analysis, Randomized Controlled Trials, Research Design
Craig K. Enders – Grantee Submission, 2023
The year 2022 is the 20th anniversary of Joseph Schafer and John Graham's paper titled "Missing data: Our view of the state of the art," currently the most highly cited paper in the history of "Psychological Methods." Much has changed since 2002, as missing data methodologies have continually evolved and improved; the range of…
Descriptors: Data, Research, Theories, Regression (Statistics)
Guanglei Hong; Fan Yang; Xu Qin – Grantee Submission, 2023
In causal mediation studies that decompose an average treatment effect into indirect and direct effects, examples of post-treatment confounding are abundant. In the presence of treatment-by-mediator interactions, past research has generally considered it infeasible to adjust for a post-treatment confounder of the mediator-outcome relationship due…
Descriptors: Causal Models, Mediation Theory, Research Problems, Statistical Inference
Kenneth A. Frank; Qinyun Lin; Spiro Maroulis – Grantee Submission, 2023
Beginning with debates about the effects of smoking on lung cancer, sensitivity analyses characterizing the hypothetical unobserved conditions that can alter statistical inferences have had profound impacts on public policy. One of the most ascendant techniques for sensitivity analysis is Oster's (2019) coefficient of proportionality, which…
Descriptors: Computation, Statistical Analysis, Statistical Inference, Correlation
Yongyun Shin; Stephen W. Raudenbush – Grantee Submission, 2023
We consider two-level models where a continuous response R and continuous covariates C are assumed missing at random. Inferences based on maximum likelihood or Bayes are routinely made by estimating their joint normal distribution from observed data R[subscript obs] and C[subscript obs]. However, if the model for R given C includes random…
Descriptors: Maximum Likelihood Statistics, Hierarchical Linear Modeling, Error of Measurement, Statistical Distributions

Peer reviewed
Direct link
