NotesFAQContact Us
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1203789
Record Type: Journal
Publication Date: 2019-Feb
Pages: 31
Abstractor: As Provided
ISSN: ISSN-0049-1241
Model-Based and Design-Based Inference: Reducing Bias Due to Differential Recruitment in Respondent-Driven Sampling
Shi, Yongren; Cameron, Christopher J.; Heckathorn, Douglas D.
Sociological Methods & Research, v48 n1 p3-33 Feb 2019
Respondent-driven sampling (RDS), a link-tracing sampling and inference method for studying hard-to-reach populations, has been shown to produce asymptotically unbiased population estimates when its assumptions are satisfied. However, some of the assumptions are prohibitively difficult to reach in the field, and the violation of a crucial assumption can produce biased estimates. We compare two different inference approaches: design-based inference, which relies on the known probability of selection in sampling, and model-based inference, which is based on models of human recruitment behavior and the social context within which sampling is conducted. The advantage of the latter approach is that when the violation of an assumption has been shown to produce biased population estimates, the model can be adjusted to more accurately reflect actual recruitment behavior, and thereby control for the source of bias. To illustrate this process, we focus on three sources of bias, differential effectiveness of recruitment, a form of nonresponse bias, and bias resulting from status differentials that produce asymmetries in recruitment behavior. We first present diagnostics for identifying types of bias and then present new forms of a model-based RDS estimator that controls for each type of bias. In this way, we show the unique advantages of a model-based estimator.
SAGE Publications. 2455 Teller Road, Thousand Oaks, CA 91320. Tel: 800-818-7243; Tel: 805-499-9774; Fax: 800-583-2665; e-mail:; Web site:
Publication Type: Journal Articles; Reports - Evaluative
Education Level: N/A
Audience: N/A
Language: English
Sponsor: National Institute of Nursing Research (NIH)
Authoring Institution: N/A
Grant or Contract Numbers: 1R21NR10961