NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
No Child Left Behind Act 20013
What Works Clearinghouse Rating
Showing 1 to 15 of 711 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Zachary K. Collier; Minji Kong; Olushola Soyoye; Kamal Chawla; Ann M. Aviles; Yasser Payne – Journal of Educational and Behavioral Statistics, 2024
Asymmetric Likert-type items in research studies can present several challenges in data analysis, particularly concerning missing data. These items are often characterized by a skewed scaling, where either there is no neutral response option or an unequal number of possible positive and negative responses. The use of conventional techniques, such…
Descriptors: Likert Scales, Test Items, Item Analysis, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Joemari Olea; Kevin Carl Santos – Journal of Educational and Behavioral Statistics, 2024
Although the generalized deterministic inputs, noisy "and" gate model (G-DINA; de la Torre, 2011) is a general cognitive diagnosis model (CDM), it does not account for the heterogeneity that is rooted from the existing latent groups in the population of examinees. To address this, this study proposes the mixture G-DINA model, a CDM that…
Descriptors: Cognitive Measurement, Models, Algorithms, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Youmi Suk; Kyung T. Han – Journal of Educational and Behavioral Statistics, 2024
As algorithmic decision making is increasingly deployed in every walk of life, many researchers have raised concerns about fairness-related bias from such algorithms. But there is little research on harnessing psychometric methods to uncover potential discriminatory bias inside decision-making algorithms. The main goal of this article is to…
Descriptors: Psychometrics, Ethics, Decision Making, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Esther Ulitzsch; Steffi Pohl; Lale Khorramdel; Ulf Kroehne; Matthias von Davier – Journal of Educational and Behavioral Statistics, 2024
Questionnaires are by far the most common tool for measuring noncognitive constructs in psychology and educational sciences. Response bias may pose an additional source of variation between respondents that threatens validity of conclusions drawn from questionnaire data. We present a mixture modeling approach that leverages response time data from…
Descriptors: Item Response Theory, Response Style (Tests), Questionnaires, Secondary School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Maria Bolsinova; Jesper Tijmstra; Leslie Rutkowski; David Rutkowski – Journal of Educational and Behavioral Statistics, 2024
Profile analysis is one of the main tools for studying whether differential item functioning can be related to specific features of test items. While relevant, profile analysis in its current form has two restrictions that limit its usefulness in practice: It assumes that all test items have equal discrimination parameters, and it does not test…
Descriptors: Test Items, Item Analysis, Generalizability Theory, Achievement Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Mark Wilson – Journal of Educational and Behavioral Statistics, 2024
This article introduces a new framework for articulating how educational assessments can be related to teacher uses in the classroom. It articulates three levels of assessment: macro (use of standardized tests), meso (externally developed items), and micro (on-the-fly in the classroom). The first level is the usual context for educational…
Descriptors: Educational Assessment, Measurement, Standardized Tests, Test Items
Peer reviewed Peer reviewed
Direct linkDirect link
Youmi Suk – Journal of Educational and Behavioral Statistics, 2024
Machine learning (ML) methods for causal inference have gained popularity due to their flexibility to predict the outcome model and the propensity score. In this article, we provide a within-group approach for ML-based causal inference methods in order to robustly estimate average treatment effects in multilevel studies when there is cluster-level…
Descriptors: Artificial Intelligence, Causal Models, Statistical Inference, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Lei Guo; Wenjie Zhou; Xiao Li – Journal of Educational and Behavioral Statistics, 2024
The testlet design is very popular in educational and psychological assessments. This article proposes a new cognitive diagnosis model, the multiple-choice cognitive diagnostic testlet (MC-CDT) model for tests using testlets consisting of MC items. The MC-CDT model uses the original examinees' responses to MC items instead of dichotomously scored…
Descriptors: Multiple Choice Tests, Diagnostic Tests, Accuracy, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Giada Spaccapanico Proietti; Mariagiulia Matteucci; Stefania Mignani; Bernard P. Veldkamp – Journal of Educational and Behavioral Statistics, 2024
Classical automated test assembly (ATA) methods assume fixed and known coefficients for the constraints and the objective function. This hypothesis is not true for the estimates of item response theory parameters, which are crucial elements in test assembly classical models. To account for uncertainty in ATA, we propose a chance-constrained…
Descriptors: Automation, Computer Assisted Testing, Ambiguity (Context), Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Adrian Quintero; Emmanuel Lesaffre; Geert Verbeke – Journal of Educational and Behavioral Statistics, 2024
Bayesian methods to infer model dimensionality in factor analysis generally assume a lower triangular structure for the factor loadings matrix. Consequently, the ordering of the outcomes influences the results. Therefore, we propose a method to infer model dimensionality without imposing any prior restriction on the loadings matrix. Our approach…
Descriptors: Bayesian Statistics, Factor Analysis, Factor Structure, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Sijia Huang; Li Cai – Journal of Educational and Behavioral Statistics, 2024
The cross-classified data structure is ubiquitous in education, psychology, and health outcome sciences. In these areas, assessment instruments that are made up of multiple items are frequently used to measure latent constructs. The presence of both the cross-classified structure and multivariate categorical outcomes leads to the so-called…
Descriptors: Classification, Data Collection, Data Analysis, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Justin L. Kern – Journal of Educational and Behavioral Statistics, 2024
Given the frequent presence of slipping and guessing in item responses, models for the inclusion of their effects are highly important. Unfortunately, the most common model for their inclusion, the four-parameter item response theory model, potentially has severe deficiencies related to its possible unidentifiability. With this issue in mind, the…
Descriptors: Item Response Theory, Models, Bayesian Statistics, Generalization
Peer reviewed Peer reviewed
Direct linkDirect link
Sean Joo; Montserrat Valdivia; Dubravka Svetina Valdivia; Leslie Rutkowski – Journal of Educational and Behavioral Statistics, 2024
Evaluating scale comparability in international large-scale assessments depends on measurement invariance (MI). The root mean square deviation (RMSD) is a standard method for establishing MI in several programs, such as the Programme for International Student Assessment and the Programme for the International Assessment of Adult Competencies.…
Descriptors: International Assessment, Monte Carlo Methods, Statistical Studies, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Jochen Ranger; Christoph König; Benjamin W. Domingue; Jörg-Tobias Kuhn; Andreas Frey – Journal of Educational and Behavioral Statistics, 2024
In the existing multidimensional extensions of the log-normal response time (LNRT) model, the log response times are decomposed into a linear combination of several latent traits. These models are fully compensatory as low levels on traits can be counterbalanced by high levels on other traits. We propose an alternative multidimensional extension…
Descriptors: Models, Statistical Distributions, Item Response Theory, Response Rates (Questionnaires)
Peer reviewed Peer reviewed
Direct linkDirect link
David Arthur; Hua-Hua Chang – Journal of Educational and Behavioral Statistics, 2024
Cognitive diagnosis models (CDMs) are the assessment tools that provide valuable formative feedback about skill mastery at both the individual and population level. Recent work has explored the performance of CDMs with small sample sizes but has focused solely on the estimates of individual profiles. The current research focuses on obtaining…
Descriptors: Algorithms, Models, Computation, Cognitive Measurement
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  48