NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1202271
Record Type: Journal
Publication Date: 2019-Jan
Pages: 16
Abstractor: As Provided
ISBN: N/A
ISSN: EISSN-1756-1108
TMI (Too Much Information)! Effects of Given Information on Organic Chemistry Students' Approaches to Solving Mechanism Tasks
DeCocq, Victoria; Bhattacharyya, Gautam
Chemistry Education Research and Practice, v20 n1 p213-228 Jan 2019
We report our qualitative study of twenty-four students enrolled in the second-semester of a second-year undergraduate (sophomore-level) organic chemistry course, Organic Two. We asked the research participants to propose the product and electron-pushing mechanism of elementary mechanistic steps in the absence and presence of the corresponding overall transformation. We also asked the students about their preferences of representational systems when working on tasks common to Organic Two to ascertain the extent to which an external representation, rather than a task, might evoke a problem-solving strategy. In addition to familiarity to instructional materials, the main reason for which the students preferred line-angle formulas for nearly all of the task types is that the representational system allowed them most readily extract relevant, or otherwise useful, information without distracting them. However, line-angle formulas did not seem to cue students to the three-dimensional attributes of molecules; only dash-and-wedge structures and Newman and chair conformers did so. For the electron-pushing tasks, the research participants' reasoning processes included at least some chemical characteristics of the species involved in the transformation when they were not given the product of reaction. When provided with the overall transformation, however, the students changed their focus to getting to the product. Consequently, they replaced correct answers with incorrect ones when given the reaction products. These results raise the possibility that traditional mechanism tasks may mask students' mechanistic reasoning ability.
Royal Society of Chemistry. Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK. Tel: +44-1223 420066; Fax: +44-1223 423623; e-mail: cerp@rsc.org; Web site: http://www.rsc.org/cerp
Publication Type: Journal Articles; Reports - Research
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A