NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1167217
Record Type: Journal
Publication Date: 2018-Jan
Pages: 39
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-0364-0213
Naïve and Robust: Class-Conditional Independence in Human Classification Learning
Jarecki, Jana B.; Meder, Björn; Nelson, Jonathan D.
Cognitive Science, v42 n1 p4-42 Jan 2018
Humans excel in categorization. Yet from a computational standpoint, learning a novel probabilistic classification task involves severe computational challenges. The present paper investigates one way to address these challenges: assuming class-conditional independence of features. This feature independence assumption simplifies the inference problem, allows for informed inferences about novel feature combinations, and performs robustly across different statistical environments. We designed a new Bayesian classification learning model (the dependence-independence structure and category learning model, DISC-LM) that incorporates varying degrees of prior belief in class-conditional independence, learns whether or not independence holds, and adapts its behavior accordingly. Theoretical results from two simulation studies demonstrate that classification behavior can appear to start simple, yet adapt effectively to unexpected task structures. Two experiments--designed using optimal experimental design principles--were conducted with human learners. Classification decisions of the majority of participants were best accounted for by a version of the model with very high initial prior belief in class-conditional independence, before adapting to the true environmental structure. Class-conditional independence may be a strong and useful default assumption in category learning tasks.
Wiley-Blackwell. 350 Main Street, Malden, MA 02148. Tel: 800-835-6770; Tel: 781-388-8598; Fax: 781-388-8232; e-mail: cs-journals@wiley.com; Web site: http://www.wiley.com/WileyCDA
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A