NotesFAQContact Us
Collection
Advanced
Search Tips
What Works Clearinghouse Rating
Does not meet standards4
Showing 1 to 15 of 1,064 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sarah Narvaiz; Qinyun Lin; Joshua M. Rosenberg; Kenneth A. Frank; Spiro J. Maroulis; Wei Wang; Ran Xu – Grantee Submission, 2024
Sensitivity analysis, a statistical method crucial for validating inferences across disciplines, quantifies the conditions that could alter conclusions (Razavi et al., 2021). One line of work is rooted in linear models and foregrounds the sensitivity of inferences to the strength of omitted variables (Cinelli & Hazlett, 2019; Frank, 2000). A…
Descriptors: Statistical Analysis, Computer Software, Robustness (Statistics), Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Yi Feng – Asia Pacific Education Review, 2024
Causal inference is a central topic in education research, although oftentimes it relies on observational studies, which makes causal identification methodologically challenging. This manuscript introduces causal graphs as a powerful language for elucidating causal theories and an effective tool for causal identification analysis. It discusses…
Descriptors: Causal Models, Graphs, Educational Research, Educational Researchers
Peer reviewed Peer reviewed
Direct linkDirect link
Widaman, Keith F. – Educational and Psychological Measurement, 2023
The import or force of the result of a statistical test has long been portrayed as consistent with deductive reasoning. The simplest form of deductive argument has a first premise with conditional form, such as p[right arrow]q, which means that "if p is true, then q must be true." Given the first premise, one can either affirm or deny…
Descriptors: Hypothesis Testing, Statistical Analysis, Logical Thinking, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Adrian Quintero; Emmanuel Lesaffre; Geert Verbeke – Journal of Educational and Behavioral Statistics, 2024
Bayesian methods to infer model dimensionality in factor analysis generally assume a lower triangular structure for the factor loadings matrix. Consequently, the ordering of the outcomes influences the results. Therefore, we propose a method to infer model dimensionality without imposing any prior restriction on the loadings matrix. Our approach…
Descriptors: Bayesian Statistics, Factor Analysis, Factor Structure, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Rosa W. Runhardt – Sociological Methods & Research, 2024
This article uses the interventionist theory of causation, a counterfactual theory taken from philosophy of science, to strengthen causal analysis in process tracing research. Causal claims from process tracing are re-expressed in terms of so-called hypothetical interventions, and concrete evidential tests are proposed which are shown to…
Descriptors: Causal Models, Statistical Inference, Intervention, Investigations
Peer reviewed Peer reviewed
Direct linkDirect link
Yi, Zhiyao; Chen, Yi-Hsin; Yin, Yue; Cheng, Ke; Wang, Yan; Nguyen, Diep; Pham, Thanh; Kim, EunSook – Journal of Experimental Education, 2022
A simulation study was conducted to examine the efficacy of nine frequently-used HOV tests, including Levene's tests with squared residuals and with absolute residuals, Brown and Forsythe (BF) test, Bootstrap BF test, O'Brien test, Z-variance test, Box-Scheffé (BS) test, Bartlett test, and Pseudo jackknife test under comprehensive simulation…
Descriptors: Statistical Analysis, Robustness (Statistics), Sampling, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Michael Schultz – Sociological Methods & Research, 2024
This paper presents a model of recurrent multinomial sequences. Though there exists a quite considerable literature on modeling autocorrelation in numerical data and sequences of categorical outcomes, there is currently no systematic method of modeling patterns of recurrence in categorical sequences. This paper develops a means of discovering…
Descriptors: Research Methodology, Sequential Approach, Models, Markov Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Xiao Liu; Zhiyong Zhang; Kristin Valentino; Lijuan Wang – Grantee Submission, 2024
Parallel process latent growth curve mediation models (PP-LGCMMs) are frequently used to longitudinally investigate the mediation effects of treatment on the level and change of outcome through the level and change of mediator. An important but often violated assumption in empirical PP-LGCMM analysis is the absence of omitted confounders of the…
Descriptors: Mediation Theory, Bayesian Statistics, Growth Models, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Xiao Liu; Zhiyong Zhang; Kristin Valentino; Lijuan Wang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Parallel process latent growth curve mediation models (PP-LGCMMs) are frequently used to longitudinally investigate the mediation effects of treatment on the level and change of outcome through the level and change of mediator. An important but often violated assumption in empirical PP-LGCMM analysis is the absence of omitted confounders of the…
Descriptors: Mediation Theory, Bayesian Statistics, Growth Models, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Wendy Chan – Asia Pacific Education Review, 2024
As evidence from evaluation and experimental studies continue to influence decision and policymaking, applied researchers and practitioners require tools to derive valid and credible inferences. Over the past several decades, research in causal inference has progressed with the development and application of propensity scores. Since their…
Descriptors: Probability, Scores, Causal Models, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Bonett, Douglas G. – Journal of Educational and Behavioral Statistics, 2022
The limitations of Cohen's ? are reviewed and an alternative G-index is recommended for assessing nominal-scale agreement. Maximum likelihood estimates, standard errors, and confidence intervals for a two-rater G-index are derived for one-group and two-group designs. A new G-index of agreement for multirater designs is proposed. Statistical…
Descriptors: Statistical Inference, Statistical Data, Interrater Reliability, Design
Peer reviewed Peer reviewed
Direct linkDirect link
David Kaplan; Kjorte Harra – Large-scale Assessments in Education, 2024
This paper aims to showcase the value of implementing a Bayesian framework to analyze and report results from international large-scale assessments and provide guidance to users who want to analyse ILSA data using this approach. The motivation for this paper stems from the recognition that Bayesian statistical inference is fast becoming a popular…
Descriptors: Bayesian Statistics, Administrator Surveys, Teacher Surveys, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Lucy D'Agostino McGowan; Travis Gerke; Malcolm Barrett – Journal of Statistics and Data Science Education, 2024
This article introduces a collection of four datasets, similar to Anscombe's quartet, that aim to highlight the challenges involved when estimating causal effects. Each of the four datasets is generated based on a distinct causal mechanism: the first involves a collider, the second involves a confounder, the third involves a mediator, and the…
Descriptors: Statistics Education, Programming Languages, Statistical Inference, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Roderick J. Little; James R. Carpenter; Katherine J. Lee – Sociological Methods & Research, 2024
Missing data are a pervasive problem in data analysis. Three common methods for addressing the problem are (a) complete-case analysis, where only units that are complete on the variables in an analysis are included; (b) weighting, where the complete cases are weighted by the inverse of an estimate of the probability of being complete; and (c)…
Descriptors: Foreign Countries, Probability, Robustness (Statistics), Responses
J. E. Borgert – ProQuest LLC, 2024
Foundations of statistics research aims to establish fundamental principles guiding inference about populations under uncertainty. It is concerned with the process of learning from observations, notions of uncertainty and induction, and satisfying inferential objectives. The growing interest in predictive methods in high-stakes fields like…
Descriptors: Statistics, Research, Logical Thinking, Statistical Inference
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  71