Publication Date
| In 2024 | 36 |
| Since 2023 | 64 |
| Since 2020 (last 5 years) | 163 |
| Since 2015 (last 10 years) | 328 |
| Since 2005 (last 20 years) | 680 |
Descriptor
| Statistical Bias | 1345 |
| Statistical Analysis | 353 |
| Error of Measurement | 288 |
| Computation | 223 |
| Sampling | 220 |
| Research Methodology | 210 |
| Research Problems | 194 |
| Comparative Analysis | 184 |
| Sample Size | 184 |
| Correlation | 165 |
| Monte Carlo Methods | 152 |
| More ▼ | |
Source
Author
Publication Type
Education Level
Location
| Australia | 15 |
| Netherlands | 14 |
| Germany | 12 |
| North Carolina | 12 |
| United States | 12 |
| Texas | 11 |
| United Kingdom | 10 |
| California | 9 |
| Canada | 9 |
| New York | 8 |
| United Kingdom (England) | 8 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
| Meets WWC Standards with or without Reservations | 1 |
Abdul Haq; Muhammad Usman; Manzoor Khan – Measurement: Interdisciplinary Research and Perspectives, 2024
Measurement errors may significantly distort the properties of an estimator. In this paper, estimators of the finite population variance using the information on first and second raw moments of the study variable are developed under stratified random sampling that incorporate the variance of a measurement error component. Additionally, combined…
Descriptors: Sampling, Error of Measurement, Evaluation Methods, Statistical Bias
Hans-Peter Piepho; Johannes Forkman; Waqas Ahmed Malik – Research Synthesis Methods, 2024
Checking for possible inconsistency between direct and indirect evidence is an important task in network meta-analysis. Recently, an evidence-splitting (ES) model has been proposed, that allows separating direct and indirect evidence in a network and hence assessing inconsistency. A salient feature of this model is that the variance for…
Descriptors: Maximum Likelihood Statistics, Evidence, Networks, Meta Analysis
Bo Zhang; Jing Luo; Susu Zhang; Tianjun Sun; Don C. Zhang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Oblique bifactor models, where group factors are allowed to correlate with one another, are commonly used. However, the lack of research on the statistical properties of oblique bifactor models renders the statistical validity of empirical findings questionable. Therefore, the present study took the first step to examine the statistical properties…
Descriptors: Correlation, Predictor Variables, Monte Carlo Methods, Statistical Bias
Yi Feng – Asia Pacific Education Review, 2024
Causal inference is a central topic in education research, although oftentimes it relies on observational studies, which makes causal identification methodologically challenging. This manuscript introduces causal graphs as a powerful language for elucidating causal theories and an effective tool for causal identification analysis. It discusses…
Descriptors: Causal Models, Graphs, Educational Research, Educational Researchers
Liang, Qianru; de la Torre, Jimmy; Law, Nancy – Journal of Educational and Behavioral Statistics, 2023
To expand the use of cognitive diagnosis models (CDMs) to longitudinal assessments, this study proposes a bias-corrected three-step estimation approach for latent transition CDMs with covariates by integrating a general CDM and a latent transition model. The proposed method can be used to assess changes in attribute mastery status and attribute…
Descriptors: Cognitive Measurement, Models, Statistical Bias, Computation
Hsin-Yun Lee; You-Lin Chen; Li-Jen Weng – Journal of Experimental Education, 2024
The second version of Kaiser's Measure of Sampling Adequacy (MSA[subscript 2]) has been widely applied to assess the factorability of data in psychological research. The MSA[subscript 2] is developed in the population and little is known about its behavior in finite samples. If estimated MSA[subscript 2]s are biased due to sampling errors,…
Descriptors: Error of Measurement, Reliability, Sampling, Statistical Bias
Liyang Sun; Eli Ben-Michael; Avi Feller – Grantee Submission, 2024
The synthetic control method (SCM) is a popular approach for estimating the impact of a treatment on a single unit with panel data. Two challenges arise with higher frequency data (e.g., monthly versus yearly): (1) achieving excellent pre-treatment fit is typically more challenging; and (2) overfitting to noise is more likely. Aggregating data…
Descriptors: Evaluation Methods, Comparative Analysis, Computation, Data Analysis
Timothy R. Konold; Elizabeth A. Sanders – Measurement: Interdisciplinary Research and Perspectives, 2024
Compared to traditional confirmatory factor analysis (CFA), exploratory structural equation modeling (ESEM) has been shown to result in less structural parameter bias when cross-loadings (CLs) are present. However, when model fit is reasonable for CFA (over ESEM), CFA should be preferred on the basis of parsimony. Using simulations, the current…
Descriptors: Structural Equation Models, Factor Analysis, Factor Structure, Goodness of Fit
Richard Breen; John Ermisch – Sociological Methods & Research, 2024
We consider the problem of bias arising from conditioning on a post-outcome collider. We illustrate this with reference to Elwert and Winship (2014) but we go beyond their study to investigate the extent to which inverse probability weighting might offer solutions. We use linear models to derive expressions for the bias arising in different kinds…
Descriptors: Probability, Statistical Bias, Weighted Scores, Least Squares Statistics
Jinma Ren; Jia Ma; Joseph C. Cappelleri – Research Synthesis Methods, 2024
A random-effects model is often applied in meta-analysis when considerable heterogeneity among studies is observed due to the differences in patient characteristics, timeframe, treatment regimens, and other study characteristics. Since 2014, the journals "Research Synthesis Methods" and the "Annals of Internal Medicine" have…
Descriptors: Meta Analysis, Effect Size, Oncology, Patients
Wendy Chan – Asia Pacific Education Review, 2024
As evidence from evaluation and experimental studies continue to influence decision and policymaking, applied researchers and practitioners require tools to derive valid and credible inferences. Over the past several decades, research in causal inference has progressed with the development and application of propensity scores. Since their…
Descriptors: Probability, Scores, Causal Models, Statistical Inference
Kulinskaya, Elena; Mah, Eung Yaw – Research Synthesis Methods, 2022
To present time-varying evidence, cumulative meta-analysis (CMA) updates results of previous meta-analyses to incorporate new study results. We investigate the properties of CMA, suggest possible improvements and provide the first in-depth simulation study of the use of CMA and CUSUM methods for detection of temporal trends in random-effects…
Descriptors: Meta Analysis, Computation, Statistical Analysis, Statistical Bias
Minghui Yao; Yunjie Xu – Sociological Methods & Research, 2024
As a crucial method in organizational and social behavior research, self-report surveys must manage method bias. Method biases are distorted scores in survey response, distorted variance in variables, and distorted relational estimates between variables caused by method designs. Studies on method bias have focused on "post hoc"…
Descriptors: Statistical Bias, Social Science Research, Questionnaires, Test Bias
Lucy D'Agostino McGowan; Travis Gerke; Malcolm Barrett – Journal of Statistics and Data Science Education, 2024
This article introduces a collection of four datasets, similar to Anscombe's quartet, that aim to highlight the challenges involved when estimating causal effects. Each of the four datasets is generated based on a distinct causal mechanism: the first involves a collider, the second involves a confounder, the third involves a mediator, and the…
Descriptors: Statistics Education, Programming Languages, Statistical Inference, Causal Models
Sara Dhaene; Yves Rosseel – Structural Equation Modeling: A Multidisciplinary Journal, 2024
In confirmatory factor analysis (CFA), model parameters are usually estimated by iteratively minimizing the Maximum Likelihood (ML) fit function. In optimal circumstances, the ML estimator yields the desirable statistical properties of asymptotic unbiasedness, efficiency, normality, and consistency. In practice, however, real-life data tend to be…
Descriptors: Factor Analysis, Factor Structure, Maximum Likelihood Statistics, Computation

Peer reviewed
Direct link
