Publication Date
| In 2024 | 245 |
| Since 2023 | 401 |
| Since 2020 (last 5 years) | 649 |
| Since 2015 (last 10 years) | 871 |
| Since 2005 (last 20 years) | 1170 |
Descriptor
| Natural Language Processing | 1266 |
| Artificial Intelligence | 483 |
| Foreign Countries | 251 |
| Technology Uses in Education | 235 |
| Computer Software | 188 |
| Computational Linguistics | 181 |
| Models | 164 |
| Intelligent Tutoring Systems | 160 |
| Educational Technology | 155 |
| Feedback (Response) | 148 |
| Automation | 146 |
| More ▼ | |
Source
Author
Publication Type
Education Level
Location
| China | 24 |
| Australia | 20 |
| United Kingdom | 16 |
| Germany | 15 |
| Spain | 14 |
| Taiwan | 14 |
| Canada | 13 |
| Pennsylvania | 11 |
| Turkey | 11 |
| California | 9 |
| Brazil | 8 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Linden Wang – Education and Information Technologies, 2024
We studied the capability of automated machine translation in the online video education space by automatically translating Khan Academy videos with state-of-the-art translation models and applying text-to-speech synthesis and audio/video synchronization to build engaging videos in target languages. We also analyzed and established two reliable…
Descriptors: Artificial Intelligence, Translation, Natural Language Processing, Educational Technology
James Edward Hill; Catherine Harris; Andrew Clegg – Research Synthesis Methods, 2024
Data extraction is a time-consuming and resource-intensive task in the systematic review process. Natural language processing (NLP) artificial intelligence (AI) techniques have the potential to automate data extraction saving time and resources, accelerating the review process, and enhancing the quality and reliability of extracted data. In this…
Descriptors: Artificial Intelligence, Search Engines, Data Collection, Natural Language Processing
Liunian Li – ProQuest LLC, 2024
To build an Artificial Intelligence system that can assist us in daily lives, the ability to understand the world around us through visual input is essential. Prior studies train visual perception models by defining concept vocabularies and annotate data against the fixed vocabulary. It is hard to define a comprehensive set of everything, and thus…
Descriptors: Artificial Intelligence, Visual Stimuli, Visual Perception, Models
Po-Chun Huang; Ying-Hong Chan; Ching-Yu Yang; Hung-Yuan Chen; Yao-Chung Fan – IEEE Transactions on Learning Technologies, 2024
Question generation (QG) task plays a crucial role in adaptive learning. While significant QG performance advancements are reported, the existing QG studies are still far from practical usage. One point that needs strengthening is to consider the generation of question group, which remains untouched. For forming a question group, intrafactors…
Descriptors: Automation, Test Items, Computer Assisted Testing, Test Construction
Bai, Xiaoyu; Stede, Manfred – International Journal of Artificial Intelligence in Education, 2023
Recent years have seen increased interests in applying the latest technological innovations, including artificial intelligence (AI) and machine learning (ML), to the field of education. One of the main areas of interest to researchers is the use of ML to assist teachers in assessing students' work on the one hand and to promote effective…
Descriptors: Artificial Intelligence, Intelligent Tutoring Systems, Natural Language Processing, Evaluation
Daniel Swingley; Robin Algayres – Cognitive Science, 2024
Computational models of infant word-finding typically operate over transcriptions of infant-directed speech corpora. It is now possible to test models of word segmentation on speech materials, rather than transcriptions of speech. We propose that such modeling efforts be conducted over the speech of the experimental stimuli used in studies…
Descriptors: Sentences, Word Recognition, Psycholinguistics, Infants
Teo Susnjak – International Journal of Artificial Intelligence in Education, 2024
A significant body of recent research in the field of Learning Analytics has focused on leveraging machine learning approaches for predicting at-risk students in order to initiate timely interventions and thereby elevate retention and completion rates. The overarching feature of the majority of these research studies has been on the science of…
Descriptors: Prediction, Learning Analytics, Artificial Intelligence, At Risk Students
Albornoz-De Luise, Romina Soledad; Arevalillo-Herraez, Miguel; Arnau, David – IEEE Transactions on Learning Technologies, 2023
In this article, we analyze the potential of conversational frameworks to support the adaptation of existing tutoring systems to a natural language form of interaction. We have based our research on a pilot study, in which the open-source machine learning framework Rasa has been used to build a conversational agent that interacts with an existing…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Artificial Intelligence, Models
Gani, Mohammed Osman; Ayyasamy, Ramesh Kumar; Sangodiah, Anbuselvan; Fui, Yong Tien – Education and Information Technologies, 2023
The automated classification of examination questions based on Bloom's Taxonomy (BT) aims to assist the question setters so that high-quality question papers are produced. Most studies to automate this process adopted the machine learning approach, and only a few utilised the deep learning approach. The pre-trained contextual and non-contextual…
Descriptors: Models, Artificial Intelligence, Natural Language Processing, Writing (Composition)
Ted M. Clark – Journal of Chemical Education, 2023
The artificial intelligence chatbot ChatGPT was used to answer questions from final exams administered in two general chemistry courses, including questions with closed-response format and with open-response format. For closed-response questions, ChatGPT was very capable at identifying the concept even when the question included a great deal of…
Descriptors: Artificial Intelligence, Science Tests, Chemistry, Science Instruction
A Method for Generating Course Test Questions Based on Natural Language Processing and Deep Learning
Hei-Chia Wang; Yu-Hung Chiang; I-Fan Chen – Education and Information Technologies, 2024
Assessment is viewed as an important means to understand learners' performance in the learning process. A good assessment method is based on high-quality examination questions. However, generating high-quality examination questions manually by teachers is a time-consuming task, and it is not easy for students to obtain question banks. To solve…
Descriptors: Natural Language Processing, Test Construction, Test Items, Models
Anke Grotlüschen; Gregor Dutz; Kristin Skowranek – International Journal of Lifelong Education, 2024
The International Literacy Day 2023 was the first after the launch the text generating artificial intelligence ChatGPT. This was the reason for a Literacy Promptathon that allows users to learn how to handle text and image generation. The International Literacy Day media coverage for the first time touched on the question of AI generated text. One…
Descriptors: Artificial Intelligence, Natural Language Processing, Critical Literacy, Misinformation
Amir Abdul Reda; Semuhi Sinanoglu; Mohamed Abdalla – Sociological Methods & Research, 2024
How can we measure the resource mobilization (RM) efforts of social movements on Twitter? In this article, we create the first ever measure of social movements' RM efforts on a social media platform. To this aim, we create a four-conditional lexicon that can parse through tweets and identify those concerned with RM. We also create a simple RM…
Descriptors: Social Media, Social Action, Natural Language Processing, Politics
Mike Perkins; Jasper Roe; Darius Postma; James McGaughran; Don Hickerson – Journal of Academic Ethics, 2024
This study explores the capability of academic staff assisted by the Turnitin Artificial Intelligence (AI) detection tool to identify the use of AI-generated content in university assessments. 22 different experimental submissions were produced using Open AI's ChatGPT tool, with prompting techniques used to reduce the likelihood of AI detectors…
Descriptors: Artificial Intelligence, Student Evaluation, Identification, Natural Language Processing
Mengjiao Zhang – ProQuest LLC, 2024
The rise of Artificial Intelligence technology has raised concerns about the potential compromise of privacy due to the handling of personal data. Private AI prevents cybercrimes and falsehoods and protects human freedom and trust. While Federated Learning offers a solution by model training across decentralized devices or servers, thereby…
Descriptors: Privacy, Cooperative Learning, Natural Language Processing, Learning Processes

Peer reviewed
Direct link
