NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20250
Since 20240
Since 2021 (last 5 years)0
Since 2016 (last 10 years)0
Since 2006 (last 20 years)2
Author
Osler, Thomas J.2
Education Level
Higher Education1
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 2 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Osler, Thomas J. – International Journal of Mathematical Education in Science and Technology, 2010
"Lord Brouncker's continued fraction for pi" is a well-known result. In this article, we show that Brouncker found not only this one continued fraction, but an entire infinite sequence of related continued fractions for pi. These were recorded in the "Arithmetica Infinitorum" by John Wallis, but appear to have been ignored and forgotten by modern…
Descriptors: Mathematics Instruction, Mathematical Concepts, Equations (Mathematics), Mathematical Formulas
Peer reviewed Peer reviewed
Direct linkDirect link
Osler, Thomas J. – International Journal of Mathematical Education in Science & Technology, 2006
Euler gave a simple method for showing that [zeta](2)=1/1[superscript 2] + 1/2[superscript 2] + 1/3[superscript 2] + ... = [pi][superscript 2]/6. He generalized his method so as to find [zeta](4), [zeta](6), [zeta](8),.... His computations became increasingly more complex as the arguments increased. In this note we show a different generalization…
Descriptors: Mathematics Education, Mathematical Concepts, College Mathematics, Computation