NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20250
Since 20240
Since 2021 (last 5 years)0
Since 2016 (last 10 years)0
Since 2006 (last 20 years)5
Author
Ayoub, Ayoub B.5
Education Level
Higher Education3
Audience
Teachers3
Location
Egypt1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ayoub, Ayoub B. – Mathematics and Computer Education, 2007
Each ellipse and hyperbola has a circle associated with it called the director circle. In this article, the author derives the equations of the circle for the ellipse and hyperbola through a different approach. Then the author concentrates on the director circle of the central conic given by the general quadratic equation. The content of this…
Descriptors: Geometric Concepts, Geometry, Equations (Mathematics), Mathematics Education
Peer reviewed Peer reviewed
Direct linkDirect link
Ayoub, Ayoub B. – Mathematics and Computer Education, 2007
The Greek astronomer Ptolemy of Alexandria (second century) and the Indian mathematician Brahmagupta (sixth century) each have a significant theorem named after them. Both theorems have to do with cyclic quadrilaterals. Ptolemy's theorem states that: In a cyclic quadrilateral, the product of the diagonals is equal to the sum of the products of two…
Descriptors: Geometric Concepts, Mathematics Instruction, Theories, Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Ayoub, Ayoub B. – Mathematics and Computer Education, 2006
The sequence 1, 1, 2, 3, 5, 8, 13, 21, ..., known as Fibonacci sequence, has a long history and special importance in mathematics. This sequence came about as a solution to the famous rabbits' problem posed by Fibonacci in his landmark book, "Liber abaci" (1202). If the "n"th term of Fibonacci sequence is denoted by [f][subscript n], then it may…
Descriptors: Mathematical Concepts, History, Mathematics, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Ayoub, Ayoub B. – Mathematics and Computer Education, 2006
In the seventh century, around 650 A.D., the Indian mathematician Brahmagupta came up with a remarkable formula expressing the area E of a cyclic quadrilateral in terms of the lengths a, b, c, d of its sides. In his formula E = [square root](s-a)(s-b)(s-c)(s-d), s stands for the semiperimeter 1/2(a+b+c+d). The fact that Brahmagupta's formula is…
Descriptors: Geometric Concepts, Mathematical Formulas, Mathematics Education, Mathematics Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Ayoub, Ayoub B. – Mathematics and Computer Education, 2006
In this article, the author takes up the special trinomial (1 + x + x[squared])[superscript n] and shows that the coefficients of its expansion are entries of a Pascal-like triangle. He also shows how to calculate these entries recursively and explicitly. This article could be used in the classroom for enrichment. (Contains 1 table.)
Descriptors: Geometric Concepts, Correlation, Mathematical Formulas, Mathematics