NotesFAQContact Us
Collection
Advanced
Search Tips
What Works Clearinghouse Rating
Showing 1 to 15 of 1,523 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Stephanie J. Blackmon; Robert L. Moore – Journal of Computing in Higher Education, 2024
As learning analytics use grows across U.S. colleges and universities, so does the need to discuss the plans, purposes, and paths for the data collected via learning analytics. More specifically, students, faculty, and others who are impacted by learning analytics use should have more information about their campus' learning analytics practices…
Descriptors: Learning Analytics, Networks, Models, Ethics
Peer reviewed Peer reviewed
Direct linkDirect link
Oscar Blessed Deho; Lin Liu; Jiuyong Li; Jixue Liu; Chen Zhan; Srecko Joksimovic – IEEE Transactions on Learning Technologies, 2024
Learning analytics (LA), like much of machine learning, assumes the training and test datasets come from the same distribution. Therefore, LA models built on past observations are (implicitly) expected to work well for future observations. However, this assumption does not always hold in practice because the dataset may drift. Recently,…
Descriptors: Learning Analytics, Ethics, Algorithms, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Chen Zhan; Srecko Joksimovic; Djazia Ladjal; Thierry Rakotoarivelo; Ruth Marshall; Abelardo Pardo – IEEE Transactions on Learning Technologies, 2024
Data are fundamental to Learning Analytics (LA) research and practice. However, the ethical use of data, particularly in terms of respecting learners' privacy rights, is a potential barrier that could hinder the widespread adoption of LA in the education industry. Despite the policies and guidelines of privacy protection being available worldwide,…
Descriptors: Privacy, Learning Analytics, Ethics, Data Use
Peer reviewed Peer reviewed
Direct linkDirect link
Xieling Chen; Di Zou; Gary Cheng; Haoran Xie – Education and Information Technologies, 2024
The rise of massive open online courses (MOOCs) brings rich opportunities for understanding learners' experiences based on analyzing learner-generated content such as course reviews. Traditionally, the unstructured textual data is analyzed qualitatively via manual coding, thus failing to offer a timely understanding of the learner's experiences.…
Descriptors: Artificial Intelligence, Semantics, Course Evaluation, MOOCs
Peer reviewed Peer reviewed
Direct linkDirect link
Oleksandra Poquet – British Journal of Educational Technology, 2024
The paper argues that learning analytics as a research field can benefit from a theory-informed shared language to describe sensemaking of learning and teaching data. To make the case for such shared language, first, I critically review prominent sensemaking theories to then demonstrate how studies in learning analytics do not use coherent…
Descriptors: Learning Analytics, Data, Affordances, Theories
Peer reviewed Peer reviewed
Direct linkDirect link
Masaya Okada; Koryu Nagata; Nanae Watanabe; Masahiro Tada – IEEE Transactions on Learning Technologies, 2024
A learner can autonomously acquire knowledge by experiencing the world, without necessarily being explicitly taught. The contents and ways of this type of real-world learning are grounded on his/her surroundings and are self-determined by computing real-world information. However, conventional studies have not modeled, observed, or understood a…
Descriptors: Computation, Learning Analytics, Experiential Learning, Self Management
Peer reviewed Peer reviewed
Direct linkDirect link
Katerina Evers; Sufen Chen – Educational Technology Research and Development, 2024
Mind mapping is a powerful technique that is often used for teaching declarative knowledge, but seldom implemented to record procedural knowledge. The present study focused on the latter. During a 12-week public presentation course, self-developed mind mapping software was utilized as a learning tool and an instrument to collect and analyze user…
Descriptors: Concept Mapping, Concept Formation, Readability, Navigation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Elyda Freitas; Fernando Fonseca; Vinicius Cardoso Garcia; Taciana Pontual Falcao; Elaine Marques; Dragan Gaševic; Rafael Ferreira Mello – Journal of Learning Analytics, 2024
Learning analytics (LA) adoption is a challenging task for higher education institutions (HEIs) since it involves different aspects of the academic environment, such as information technology infrastructure, human resource management, ethics, and pedagogical issues. Therefore, it is necessary to provide institutions with supporting instruments to…
Descriptors: Learning Analytics, Higher Education, Models, Program Implementation
Peer reviewed Peer reviewed
Direct linkDirect link
Tianjiao Wang; Xiaona Xia – SAGE Open, 2023
The study of learning behaviors with multi features is of great significance for interactive cooperation. The data prediction and decision are to realize the comprehensive analysis and value mining. In this study, hierarchical learning behavior based on feature cluster is proposed. Based on the massive data in interactive learning environment, the…
Descriptors: Cluster Grouping, Mathematical Models, Artificial Intelligence, Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
Giora Alexandron; Aviram Berg; Jose A. Ruiperez-Valiente – IEEE Transactions on Learning Technologies, 2024
This article presents a general-purpose method for detecting cheating in online courses, which combines anomaly detection and supervised machine learning. Using features that are rooted in psychometrics and learning analytics literature, and capture anomalies in learner behavior and response patterns, we demonstrate that a classifier that is…
Descriptors: Cheating, Identification, Online Courses, Artificial Intelligence
Michael J. Herbert – ProQuest LLC, 2023
Learning Analytics (LA) is the collection and analysis of data about learners and their environments. University faculty are among some of the most important stakeholders in the successful implementation of LA initiatives, whose participation can influence the success or failure of innovative educational changes. However, limited research exists…
Descriptors: Learning Analytics, College Faculty, Educational Change, Motivation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sina Nazeri; Marek Hatala; Carman Neustaedter – Journal of Learning Analytics, 2023
Learning has a temporal characteristic in nature, which means that it occurs over the passage of time. The research on the temporal aspects of learning faces several challenges, one of which is utilizing appropriate analytical techniques to exploit the temporal data. There is no coherent guide to selecting certain temporal techniques to lead to…
Descriptors: Educational Research, Time Factors (Learning), Learning Analytics, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Xiaona Xia – Interactive Learning Environments, 2023
Effective analysis and demonstration of these data features is of great significance for the optimization of interactive learning environment and learning behavior. Therefore, we take the big data set of learning behavior generated by an online interactive learning environment as the research object, define the features of learning behavior, and…
Descriptors: Learning Strategies, Interaction, Educational Environment, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Nedime Selin Çöpgeven; Mehmet Firat – Journal of Educators Online, 2024
Learning processes can now be transferred to digital environments, allowing for the tracking of learners' digital footprints. The field of learning analytics focuses on the efficient use of these digital records to improve both learning experiences and processes. Dashboards are the tangible outputs of learning analytics. The use of dashboards in…
Descriptors: Electronic Learning, Distance Education, Academic Achievement, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Teo Susnjak – International Journal of Artificial Intelligence in Education, 2024
A significant body of recent research in the field of Learning Analytics has focused on leveraging machine learning approaches for predicting at-risk students in order to initiate timely interventions and thereby elevate retention and completion rates. The overarching feature of the majority of these research studies has been on the science of…
Descriptors: Prediction, Learning Analytics, Artificial Intelligence, At Risk Students
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  102