Descriptor
Source
| School Science and Mathematics | 34 |
Author
| Mathews, John H. | 2 |
| Adner, Haya | 1 |
| Aslan, Farhad | 1 |
| Bazak, Benjamin F. | 1 |
| Berenson, Sarah B. | 1 |
| Brosnan, Patricia A. | 1 |
| Brown, Martha A. | 1 |
| Chandler, Donald G. | 1 |
| DeMarr, Ralph E. | 1 |
| Dick, Thomas | 1 |
| Dick, Thomas P. | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 34 |
| Guides - Classroom - Teacher | 17 |
| Reports - Research | 11 |
| Computer Programs | 3 |
| Opinion Papers | 3 |
| Reports - Descriptive | 2 |
| Reports - Evaluative | 2 |
| Information Analyses | 1 |
Education Level
Audience
| Practitioners | 10 |
| Teachers | 10 |
| Researchers | 3 |
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
| Does not meet standards | 1 |
Peer reviewedChandler, Donald G.; Brosnan, Patricia A. – School Science and Mathematics, 1995
Percentages of mathematics content for 7 text series, grades 1-8, were compared with percentages on the Ohio Ninth Grade Proficiency Test. Ratios of text:test percentages were arithmetic (63:30), measurement (10:25), geometry (12:15), data analysis (11:15), and algebra (4:15). Implications are discussed. (MSD)
Descriptors: Achievement Tests, Content Analysis, Elementary School Mathematics, Elementary Secondary Education
Peer reviewedDoerr, Helen M. – School Science and Mathematics, 1996
Investigates the construction of understanding of the motion of an object down an inclined plane which takes place through the process of model building in an integrated algebra, trigonometry, and physics class. Discusses four major themes related to student learning through modeling that emerged from the results. Discusses implications for…
Descriptors: Algebra, Cognitive Development, Computer Uses in Education, Educational Strategies
Peer reviewedJohanning, Debra I. – School Science and Mathematics, 2000
Uses qualitative analysis to understand how middle school students thought about and approached problems while they wrote descriptions of why and how they solve problems. Indicates that rich learning experiences are possible when writing is used as a way to prepare for small group discussion in mathematics. (Contains 13 references.) (Author/ASK)
Descriptors: Algebra, Content Area Writing, Cooperative Learning, Group Discussion
Peer reviewedEberhart, James G. – School Science and Mathematics, 1994
Presents alternative equation-solving procedures that emphasize an examination of the steps or operations necessary to perform a calculation, followed by the inversion of those steps. The approach is especially attractive to students with limited mathematical skills. (Author/MKR)
Descriptors: Algebra, Algorithms, Equations (Mathematics), Learning Activities
Peer reviewedMathews, John H. – School Science and Mathematics, 1995
Shows how five points determine the formula of a conic section and uses the determinant as a computational device to find the coefficients in the formula. Uses symbolic, numerical, and graphical techniques. (Author/MKR)
Descriptors: Algebra, Computer Uses in Education, Equations (Mathematics), Graphs
Peer reviewedDeMarr, Ralph E.; Gonzales, Nancy A. – School Science and Mathematics, 1991
A sample of novel verbal problems which can be solved by using systems of linear equations with free variables is presented. The procedure of Gaussian elimination is used to solve the system. (KR)
Descriptors: Algebra, Mathematical Applications, Mathematical Formulas, Mathematics Education
Peer reviewedDuncan, Hollis; Dick, Thomas – School Science and Mathematics, 2000
Describes the Treisman model which involves supplemental workshops in which college students solve problems in collaborative learning groups. Reports on the effectiveness of Math Excel, an implementation of the Treisman model for introductory mathematics courses at Oregon State University over five academic terms. Reveals a significant effect on…
Descriptors: Algebra, Calculus, Cooperative Learning, Higher Education
Peer reviewedStallings, Lynn – School Science and Mathematics, 2000
Traces three major stages in the development of algebraic notation: (1) rhetorical or prose; (2) syncopated; and (3) symbolic. Illustrates the development of a standardized, efficient symbol system by tracing the evolution of some common symbols, including the symbols for equals, addition, subtraction, multiplication, and division. (Author/WRM)
Descriptors: Algebra, Higher Education, Mathematical Concepts, Mathematical Vocabulary
Peer reviewedMiller, Gordon L.; Whalen, Mary T. – School Science and Mathematics, 1995
Explores abundant numbers and presents a proof that abundant numbers of every order exist. Readers are encouraged to use the included computer program to explore abundant numbers for themselves, look for patterns in the output, and consider further questions. (Author/MKR)
Descriptors: Algebra, Arithmetic, Computer Software, Computer Uses in Education
Peer reviewedRudolph, William B.; Tvrdik, Debra – School Science and Mathematics, 1991
Described is a strategy that allows students to experiment with probability without applying formulas to solve problems. Students are able to intuitively develop concepts of probability before formal definitions and properties. Sample problems are included along with BASIC programs for some of the problems. (KR)
Descriptors: Algebra, Computer Software, Learning Activities, Mathematics Education
Peer reviewedToumasis, Charalampos – School Science and Mathematics, 1994
Describes an activity in which students, grades 7-12, explore patterns and properties of repunits, an integer written as a string of ones. Includes extensions for exploring algebraic justifications. (MKR)
Descriptors: Algebra, Discovery Processes, Learning Activities, Mathematics Education
Peer reviewedAdner, Haya – School Science and Mathematics, 1990
Investigated the effect of the choice of a model's medium (algebraic expression or computer program) on the performance of students. Student programers did not transfer the qualities of a computer program approach to their algebraic models. Provides items for five tests. (YP)
Descriptors: Algebra, College Mathematics, Computer Software, Higher Education
Peer reviewedErickson, Donna Bird – School Science and Mathematics, 1991
The ability of students to sort cards based on surface features and deep patterns is investigated. The effect of the presence of variables and what makes a pattern difficult or easy for students to recognize are discussed. Study revealed that students are unsuccessful at making connections between expressions, sentences, and sequences which share…
Descriptors: Algebra, Arithmetic, Attention, Fractions
Peer reviewedGlidden, Peter Lochiel – School Science and Mathematics, 1993
Describes the Secant Method, a numerical method to approximate solutions to equations for which symbolic solution methods do not apply. Illustrates the method using the EXCEL spreadsheet program. Discusses instructional implications of utilizing this method. (MDH)
Descriptors: Algebra, Computer Uses in Education, Equations (Mathematics), Estimation (Mathematics)
Peer reviewedAslan, Farhad; Duck, Howard – School Science and Mathematics, 1992
P-adic or g-adic sets are sets of elements formed by linear combinations of powers of p, a prime number, or g, a counting number, where the coefficients are whole numbers less than p or g. Discusses exercises illustrating basic numerical operations for p-adic and g-adic sets. Provides BASIC computer programs to verify the solutions. (MDH)
Descriptors: Addition, Algebra, Algorithms, College Mathematics


