NotesFAQContact Us
Search Tips
What Works Clearinghouse Rating
Showing 1 to 15 of 165 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Cho, Eunji; Lee, Kyunghwa; Cherniak, Shara; Jung, Sung Eun – Technology, Knowledge and Learning, 2017
Drawing on Latour's (Reassembling the social: an introduction to actor--network-theory, Oxford University Press, New York, 2005), this manuscript discusses a study of a robotics class in a public, Title I elementary school. Compared with theoretical frameworks (e.g., constructivism and constructionism) dominant in the field of early childhood…
Descriptors: Robotics, Man Machine Systems, Instructional Materials, Science Activities
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Majherová, Janka; Králík, Václav – European Journal of Contemporary Education, 2017
In the training of future informatics teachers the students obtain experience with different methods of programming. As well, the students become familiar with programming by using the robotic system Lego Mindstorms. However, the small number of Lego systems available is a limiting factor for the teaching process. Use of virtual robotic…
Descriptors: Programming, Teaching Methods, Instructional Innovation, Preservice Teachers
Peer reviewed Peer reviewed
Direct linkDirect link
Jaipal-Jamani, Kamini; Angeli, Charoula – Journal of Science Education and Technology, 2017
The current impetus for increasing STEM in K-12 education calls for an examination of how preservice teachers are being prepared to teach STEM. This paper reports on a study that examined elementary preservice teachers' (n = 21) self-efficacy, understanding of science concepts, and computational thinking as they engaged with robotics in a science…
Descriptors: STEM Education, Elementary Secondary Education, Preservice Teacher Education, Elementary School Teachers
Peer reviewed Peer reviewed
Direct linkDirect link
Flannery, Louise P.; Bers, Marina Umaschi – Journal of Research on Technology in Education, 2013
Young learners today generate, express, and interact with sophisticated ideas using a range of digital tools to explore interactive stories, animations, computer games, and robotics. In recent years, new developmentally appropriate robotics kits have been entering early childhood classrooms. This paper presents a retrospective analysis of one…
Descriptors: Developmentally Appropriate Practices, Robotics, Early Childhood Education, Programming
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mikropoulos, Tassos A.; Bellou, Ioanna – Themes in Science and Technology Education, 2013
Although there are many studies on the constructionist use of educational robotics, they have certain limitations. Some of them refer to robotics education, rather than educational robotics. Others follow a constructionist approach, but give emphasis only to design skills, creativity and collaboration. Some studies use robotics as an educational…
Descriptors: Robotics, Educational Technology, Constructivism (Learning), Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Park, Jungho – Journal of Computers in Mathematics and Science Teaching, 2015
Much research has been conducted in educational robotics, a new instructional technology, for K-12 education. However, there are arguments on the effect of robotics and limited empirical evidence to investigate the impact of robotics in science learning. Also most robotics studies were carried in an informal educational setting. This study…
Descriptors: Robotics, Elementary School Science, Science Instruction, Inquiry
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Alimisis, Dimitris – Themes in Science and Technology Education, 2013
This paper investigates the current situation in the field of educational robotics and identifies new challenges and trends focusing on the use of robotic technologies as a tool that will support creativity and other 21st-century learning skills. Finally, conclusions and proposals are presented for promoting cooperation and networking of…
Descriptors: Robotics, Educational Technology, Science Education, Creativity
Cheng, Pericles L. – ProQuest LLC, 2017
The Digital Agenda for Europe (2015) states that there will be 825,000 unfilled vacancies for Information and Communications Technology by 2020. This lack of IT professionals stems from the small number of students graduating in computer science. To retain more students in the field, teachers can use remote robotic experiments to explain difficult…
Descriptors: Intention, Robotics, High Schools, Secondary School Teachers
Peer reviewed Peer reviewed
Direct linkDirect link
Faria, Carlos; Vale, Carolina; Machado, Toni; Erlhagen, Wolfram; Rito, Manuel; Monteiro, Sérgio; Bicho, Estela – IEEE Transactions on Education, 2016
Robotics has been playing an important role in modern surgery, especially in procedures that require extreme precision, such as neurosurgery. This paper addresses the challenge of teaching robotics to undergraduate engineering students, through an experiential learning project of robotics fundamentals based on a case study of robot-assisted…
Descriptors: Robotics, Surgery, Neurology, Case Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Ashbrook, Peggy – Science and Children, 2017
This column discusses resources and science topics related to students in grades preK to 2. This month's issue discusses how digital media and robotics fit into the early childhood curriculum, and how time on devices supports learning goals and developmentally appropriate practice.
Descriptors: Early Childhood Education, Technology Uses in Education, Educational Technology, Technology Integration
Bakke, Christine K. – ProQuest LLC, 2013
The purpose of this study is to examine whether participation in robotics provides opportunities for educational and professional skill development, significant enough to merit the recommendation of robotics courses as a part of mainstream curriculum offerings in K-12 schools. This non-experimental, mixed methods study examined current junior high…
Descriptors: Robotics, Junior High School Students, High School Students, Secondary Education
Gura, Mark – Learning & Leading with Technology, 2012
Lego robotics is engaging, hands-on, and encompasses every one of the NETS for Students. It also inspires a love of science, technology, engineering, and mathematics (STEM) and provides the experience students need to use digital age skills in the real world. In this article, the author discusses how schools get involved with Lego Robotics and…
Descriptors: Student Participation, Robotics, Educational Technology, Learning Motivation
Peer reviewed Peer reviewed
Direct linkDirect link
Benitti, Fabiane Barreto Vavassori – Computers & Education, 2012
This study reviews recently published scientific literature on the use of robotics in schools, in order to: (a) identify the potential contribution of the incorporation of robotics as educational tool in schools, (b) present a synthesis of the available empirical evidence on the educational effectiveness of robotics as an educational tool in…
Descriptors: Evidence, Research Methodology, Literature Reviews, Synthesis
Peer reviewed Peer reviewed
Direct linkDirect link
Howard, A. M.; Park, Chung Hyuk; Remy, S. – IEEE Transactions on Learning Technologies, 2012
The robotics field represents the integration of multiple facets of computer science and engineering. Robotics-based activities have been shown to encourage K-12 students to consider careers in computing and have even been adopted as part of core computer-science curriculum at a number of universities. Unfortunately, for students with visual…
Descriptors: Robotics, Computer Interfaces, Federal Aid, Pilot Projects
Ensign, Todd I. – ProQuest LLC, 2017
Educational robotics (ER) combines accessible and age-appropriate building materials, programmable interfaces, and computer coding to teach science and mathematics using the engineering design process. ER has been shown to increase K-12 students' understanding of STEM concepts, and can develop students' self-confidence and interest in STEM. As…
Descriptors: Robotics, Educational Technology, Technology Uses in Education, Science Instruction
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11