NotesFAQContact Us
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ899533
Record Type: Journal
Publication Date: 2010-Jun
Pages: 8
Abstractor: As Provided
ISSN: ISSN-1940-5510
Complex I Disorders: Causes, Mechanisms, and Development of Treatment Strategies at the Cellular Level
Valsecchi, Federica; Koopman, Werner J. H.; Manjeri, Ganesh R.; Rodenburg, Richard J.; Smeitink, Jan A. M.; Willems, Peter H. G. M.
Developmental Disabilities Research Reviews, v16 n2 p175-182 Jun 2010
Mitochondrial oxidative phosphorylation (OXPHOS) represents the final step in the conversion of nutrients into cellular energy. Genetic defects in the OXPHOS system have an incidence between 1:5,000 and 1:10,000 live births. Inherited isolated deficiency of the first complex (CI) of this system, a multisubunit assembly of 45 different proteins, occurs most frequently and originates from mutations in either the nuclear DNA, encoding 38 structural subunits and several assembly factors, or the mitochondrial DNA, encoding 7 structural subunits. The deficiency is associated with devastating multisystemic disorders, often affecting the brain, with onset in early childhood. There are currently no rational treatment strategies. Here, we present an overview of the genetic origins and cellular consequences of this deficiency and discuss how these insights might aid future development of treatment strategies. (Contains 4 figures.)
Wiley-Blackwell. 111 River Street, Hoboken, NJ 07030-5774. Tel: 800-825-7550; Tel: 201-748-6645; Fax: 201-748-6021; e-mail:; Web site:
Publication Type: Journal Articles; Reports - Descriptive
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A