NotesFAQContact Us
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1036367
Record Type: Journal
Publication Date: 2014-Aug
Pages: 7
Abstractor: As Provided
ISSN: ISSN-0021-9584
3D Printed Molecules and Extended Solid Models for Teaching Symmetry and Point Groups
Scalfani, Vincent F.; Vaid, Thomas P.
Journal of Chemical Education, v91 n8 p1174-1180 Aug 2014
Tangible models help students and researchers visualize chemical structures in three dimensions (3D). 3D printing offers a unique and straightforward approach to fabricate plastic 3D models of molecules and extended solids. In this article, we prepared a series of digital 3D design files of molecular structures that will be useful for teaching chemical education topics such as symmetry and point groups. Two main file preparation methods are discussed within this article that outlines how to prepare 3D printable chemical structures. Both methods start with either a crystallographic information file (.cif) or a protein databank (.pdb) file and are ultimately converted into a 3D stereolithography (.stl) file by using a variety of commercially and freely available software. From the series of digital 3D chemical structures prepared, 18 molecules and 7 extended solids were 3D printed. Our results show that the file preparation methods discussed within this article are both suitable routes to prepare 3D printable digital files of chemical structures. Further, our results also suggest that 3D printing is an excellent method for fabricating 3D models of molecules and extended solids.
Division of Chemical Education, Inc and ACS Publications Division of the American Chemical Society. 1155 Sixteenth Street NW, Washington, DC 20036. Tel: 800-227-5558; Tel: 202-872-4600; e-mail:; Web site:
Publication Type: Journal Articles; Reports - Descriptive
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A