NotesFAQContact Us
Collection
Advanced
Search Tips
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ929193
Record Type: Journal
Publication Date: 2011-Aug
Pages: 28
Abstractor: As Provided
Reference Count: 0
ISBN: N/A
ISSN: ISSN-0010-0277
A Computational Model of Word Segmentation from Continuous Speech Using Transitional Probabilities of Atomic Acoustic Events
Rasanen, Okko
Cognition, v120 n2 p149-176 Aug 2011
Word segmentation from continuous speech is a difficult task that is faced by human infants when they start to learn their native language. Several studies indicate that infants might use several different cues to solve this problem, including intonation, linguistic stress, and transitional probabilities between subsequent speech sounds. In this work, a computational model for word segmentation and learning of primitive lexical items from continuous speech is presented. The model does not utilize any a priori linguistic or phonemic knowledge such as phones, phonemes or articulatory gestures, but computes transitional probabilities between atomic acoustic events in order to detect recurring patterns in speech. Experiments with the model show that word segmentation is possible without any knowledge of linguistically relevant structures, and that the learned ungrounded word models show a relatively high selectivity towards specific words or frequently co-occurring combinations of short words. (Contains 18 figures and 8 tables.)
Elsevier. 6277 Sea Harbor Drive, Orlando, FL 32887-4800. Tel: 877-839-7126; Tel: 407-345-4020; Fax: 407-363-1354; e-mail: usjcs@elsevier.com; Web site: http://www.elsevier.com
Publication Type: Journal Articles; Reports - Descriptive
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A