NotesFAQContact Us
Collection
Advanced
Search Tips
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ924560
Record Type: Journal
Publication Date: 2007-Jan
Pages: 19
Abstractor: As Provided
Reference Count: 47
ISBN: N/A
ISSN: ISSN-0926-7220
"Untangling Sickle-Cell Anemia and the Teaching of Heterozygote Protection"
Howe, Eric Michael
Science & Education, v16 n1 p1-19 Jan 2007
Introductory biology textbooks often use the example of sickle-cell anemia to illustrate the concept of heterozygote protection. Ordinarily scientists expect the frequency of a gene associated with a debilitating illness would be low owing to its continual elimination by natural selection. The gene that causes sickle-cell anemia, however, has a relatively high frequency in many parts of the world. Historically, scientists proposed and defended several alternative theories to account for this anomaly, though it is now widely recognized among the scientific community that high frequencies of the gene reflect its benefit to heterozygotes against malaria. Textbooks normally develop this concept with reference to the often-used maps of Africa showing how in areas where the frequency of the sickle-cell gene is high, there is also higher exposure to the disease malaria. While sickle-cell anemia is often the example of choice for explaining and illustrating the concept of heterozygote protection, the present paper argues that exploring the history of scientific research behind our contemporary understanding has advantages for helping students understand multiple factors related to population genetics (e.g. mutation, gene flow, drift) "in addition" to heterozygote protection. In so doing, this approach invites students to evaluate the legitimacy of their own alternative conceptions about introductory population genetics or about the genetics of the disease sickle-cell anemia. The various historical theories scientists proposed and defended often resemble those of students who first learn about the disease. As such, a discussion of how scientists reached consensus about the role of heterozygote protection may help students understand and appreciate what are now recognized to be limitations in the views they bring to their classrooms. The paper concludes by discussing the ramifications of this approach in potentially helping students to examine certain aspects of the nature of science.
Springer. 233 Spring Street, New York, NY 10013. Tel: 800-777-4643; Tel: 212-460-1500; Fax: 212-348-4505; e-mail: service-ny@springer.com; Web site: http://www.springerlink.com
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: Teachers
Language: English
Sponsor: N/A
Authoring Institution: N/A