NotesFAQContact Us
Collection
Advanced
Search Tips
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ924262
Record Type: Journal
Publication Date: 2010-Jul
Pages: 17
Abstractor: As Provided
Reference Count: 18
ISBN: N/A
ISSN: ISSN-1382-3892
Designing for Mathematical Abstraction
Pratt, Dave; Noss, Richard
International Journal of Computers for Mathematical Learning, v15 n2 p81-97 Jul 2010
Our focus is on the design of systems (pedagogical, technical, social) that encourage mathematical abstraction, a process we refer to as "designing for abstraction." In this paper, we draw on detailed design experiments from our research on children's understanding about chance and distribution to re-present this work as a case study in designing for abstraction. Through the case study, we elaborate a number of design heuristics that we claim are also identifiable in the broader literature on designing for mathematical abstraction. Our previous work on the micro-evolution of mathematical knowledge indicated that new mathematical abstractions are routinely forged in activity with available tools and representations, coordinated with relatively naive unstructured knowledge. In this paper, we identify the role of design in steering the micro-evolution of knowledge towards the focus of the designer's aspirations. A significant finding from the current analysis is the identification of a heuristic in designing for abstraction that requires the intentional blurring of the key mathematical concepts with the tools whose use might foster the construction of that abstraction. It is commonly recognized that meaningful design constructs emerge from careful analysis of children's activity in relation to the designer's own framework for mathematical abstraction. The case study in this paper emphasizes the insufficiency of such a model for the relationship between epistemology and design. In fact, the case study characterises the dialectic relationship between epistemological analysis and design, in which the theoretical foundations of designing for abstraction and for the micro-evolution of mathematical knowledge can co-emerge.
Springer. 233 Spring Street, New York, NY 10013. Tel: 800-777-4643; Tel: 212-460-1500; Fax: 212-348-4505; e-mail: service-ny@springer.com; Web site: http://www.springerlink.com
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A