NotesFAQContact Us
Collection
Advanced
Search Tips
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ872694
Record Type: Journal
Publication Date: 2010-Feb
Pages: 15
Abstractor: As Provided
Reference Count: 0
ISBN: N/A
ISSN: ISSN-0898-929X
Specific and Nonspecific Neural Activity during Selective Processing of Visual Representations in Working Memory
Oh, Hwamee; Leung, Hoi-Chung
Journal of Cognitive Neuroscience, v22 n2 p292-306 Feb 2010
In this fMRI study, we investigated prefrontal cortex (PFC) and visual association regions during selective information processing. We recorded behavioral responses and neural activity during a delayed recognition task with a cue presented during the delay period. A specific cue ("Face" or "Scene") was used to indicate which one of the two initially viewed pictures of a face and a scene would be tested at the end of a trial, whereas a nonspecific cue ("Both") was used as control. As expected, the specific cues facilitated behavioral performance (faster response times) compared to the nonspecific cue. A postexperiment memory test showed that the items cued to remember were better recognized than those not cued. The fMRI results showed largely overlapped activations across the three cue conditions in dorsolateral and ventrolateral PFC, dorsomedial PFC, posterior parietal cortex, ventral occipito-temporal cortex, dorsal striatum, and pulvinar nucleus. Among those regions, dorsomedial PFC and inferior occipital gyrus remained active during the entire postcue delay period. Differential activity was mainly found in the association cortices. In particular, the parahippocampal area and posterior superior parietal lobe showed significantly enhanced activity during the postcue period of the scene condition relative to the Face and Both conditions. No regions showed differentially greater responses to the face cue. Our findings suggest that a better representation of visual information in working memory may depend on enhancing the more specialized visual association areas or their interaction with PFC.
MIT Press. Circulation Department, Five Cambridge Center, Cambridge, MA 02142. Tel: 617-253-2889; Fax: 617-577-1545; e-mail: journals-orders@mit.edu; Web site: http://www.mitpressjournals.org/loi/jocn
Publication Type: Journal Articles; Reports - Evaluative
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A