NotesFAQContact Us
Search Tips
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ869938
Record Type: Journal
Publication Date: 2010-Feb
Pages: 32
Abstractor: As Provided
Reference Count: 0
ISSN: ISSN-0010-0277
A Probabilistic Model of Theory Formation
Kemp, Charles; Tenenbaum, Joshua B.; Niyogi, Sourabh; Griffiths, Thomas L.
Cognition, v114 n2 p165-196 Feb 2010
Concept learning is challenging in part because the meanings of many concepts depend on their relationships to other concepts. Learning these concepts in isolation can be difficult, but we present a model that discovers entire systems of related concepts. These systems can be viewed as simple theories that specify the concepts that exist in a domain, and the laws or principles that relate these concepts. We apply our model to several real-world problems, including learning the structure of kinship systems and learning ontologies. We also compare its predictions to data collected in two behavioral experiments. Experiment 1 shows that our model helps to explain how simple theories are acquired and used for inductive inference. Experiment 2 suggests that our model provides a better account of theory discovery than a more traditional alternative that focuses on features rather than relations. (Contains 4 tables and 18 figures.)
Elsevier. 6277 Sea Harbor Drive, Orlando, FL 32887-4800. Tel: 877-839-7126; Tel: 407-345-4020; Fax: 407-363-1354; e-mail:; Web site:
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A