NotesFAQContact Us
Search Tips
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ865273
Record Type: Journal
Publication Date: 2009
Pages: 20
Abstractor: As Provided
Reference Count: 78
ISSN: ISSN-0096-1523
Contour Integration across Spatial Frequency
Persike, Malte; Olzak, Lynn A.; Meinhardt, Gunter
Journal of Experimental Psychology: Human Perception and Performance, v35 n6 p1629-1648 2009
Association field models of contour integration suggest that local band-pass elements are spatially grouped to global contours within limited bands of spatial frequency (Field, Hayes, & Hess, 1993). While results for local orientation and spacing variation render support for AF models, effects of spatial frequency (SF) have rarely been addressed. To explore whether contour integration occurs across SF, we studied human contour detection in Gabor random fields with SF jitter along the contour, and in the embedding field. Results show no impairment of contour detection when the contour elements are 1.25 octaves apart. Even with a SF separation of 2.25 octaves there is only moderate impairment. Because SF tuning functions measured for contextual interactions of neighbored single band-pass elements indicate much smaller bandwidths (Polat & Sagi, 1993), the results imply that contour integration cannot rest solely on local locking among neighbored orientation and SF tuned mechanisms. Robustness across spatial frequency, and across color and depth, as found recently, indicates that local orientation based grouping integrates across other basic features. This suggests an origin in not too distal brain regions. (Contains 11 footnotes, 7 tables, and 8 figures.)
American Psychological Association. Journals Department, 750 First Street NE, Washington, DC 20002-4242. Tel: 800-374-2721; Tel: 202-336-5510; Fax: 202-336-5502; e-mail:; Web site:
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A