NotesFAQContact Us
Search Tips
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ856001
Record Type: Journal
Publication Date: 2009-Sep
Pages: 13
Abstractor: As Provided
Reference Count: 0
ISSN: ISSN-0033-3123
On Insensitivity of the Chi-Square Model Test to Nonlinear Misspecification in Structural Equation Models
Mooijaart, Ab; Satorra, Albert
Psychometrika, v74 n3 p443-455 Sep 2009
In this paper, we show that for some structural equation models (SEM), the classical chi-square goodness-of-fit test is unable to detect the presence of nonlinear terms in the model. As an example, we consider a regression model with latent variables and interactions terms. Not only the model test has zero power against that type of misspecifications, but even the theoretical (chi-square) distribution of the test is not distorted when severe interaction term misspecification is present in the postulated model. We explain this phenomenon by exploiting results on asymptotic robustness in structural equation models. The importance of this paper is to warn against the conclusion that if a proposed linear model fits the data well according to the chi-square goodness-of-fit test, then the underlying model is linear indeed; it will be shown that the underlying model may, in fact, be severely nonlinear. In addition, the present paper shows that such insensitivity to nonlinear terms is only a particular instance of a more general problem, namely, the incapacity of the classical chi-square goodness-of-fit test to detect deviations from zero correlation among exogenous regressors (either being them observable, or latent) when the structural part of the model is just saturated.
Springer. 233 Spring Street, New York, NY 10013. Tel: 800-777-4643; Tel: 212-460-1500; Fax: 212-348-4505; e-mail:; Web site:
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A