NotesFAQContact Us
Collection
Advanced
Search Tips
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ836297
Record Type: Journal
Publication Date: 2009
Pages: 19
Abstractor: As Provided
Reference Count: 29
ISBN: N/A
ISSN: ISSN-1436-4522
A Markov-Based Recommendation Model for Exploring the Transfer of Learning on the Web
Huang, Yueh-Min; Huang, Tien-Chi; Wang, Kun-Te; Hwang, Wu-Yuin
Educational Technology & Society, v12 n2 p144-162 2009
The ability to apply existing knowledge in new situations and settings is clearly a vital skill that all students need to develop. Nowhere is this truer than in the rapidly developing world of Web-based learning, which is characterized by non-sequential courses and the absence of an effective cross-subject guidance system. As a result, questions have arisen about how to best explore and stimulate the transfer of learning from one subject to another in electronically mediated courses of study. In this study, we argue that online learners would benefit from guidance along applicable group-learning paths. This paper proposes use of the learning sequence recommendation system (LSRS) to help learners achieve effective Web-based learning transfer using recommendations based on group-learning paths. We begin with a Markov chain model, which is a probability transition model, to accumulate transition probabilities among learning objects in a course of study. We further employ an entropy-based approach to assist this model in discovering one or more recommended learning paths through the course material. Statistical results showed that the proposed approach can provide students with dependable paths leading to higher achievement levels, both in terms of knowledge acquisition and integration, than those typically attained in more traditional learning environments. Our study also identified benefits for teachers, providing them with ideas and tools needed to design better online courses. Thus, our study points the way to a Web-based learning transfer model that enables teachers to refine the quality of their instruction and equips students with the tools to enhance the breadth and depth of their education. (Contains 9 figures and 9 tables.)
International Forum of Educational Technology & Society. Athabasca University, School of Computing & Information Systems, 1 University Drive, Athabasca, AB T9S 3A3, Canada. Tel: 780-675-6812; Fax: 780-675-6973; Web site: http://www.ifets.info
Publication Type: Journal Articles; Reports - Research
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Identifiers - Location: Taiwan