NotesFAQContact Us
Search Tips
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ796569
Record Type: Journal
Publication Date: 2008-Jun
Pages: 16
Abstractor: Author
Reference Count: 0
ISSN: ISSN-0033-3123
Latent Class Models for Diary Method Data: Parameter Estimation by Local Computations
Rijmen, Frank; Vansteelandt, Kristof; De Boeck, Paul
Psychometrika, v73 n2 p167-182 Jun 2008
The increasing use of diary methods calls for the development of appropriate statistical methods. For the resulting panel data, latent Markov models can be used to model both individual differences and temporal dynamics. The computational burden associated with these models can be overcome by exploiting the conditional independence relations implied by the model. This is done by associating a probabilistic model with a directed acyclic graph, and applying transformations to the graph. The structure of the transformed graph provides a factorization of the joint probability function of the manifest and latent variables, which is the basis of a modified and more efficient E-step of the EM algorithm. The usefulness of the approach is illustrated by estimating a latent Markov model involving a large number of measurement occasions and, subsequently, a hierarchical extension of the latent Markov model that allows for transitions at different levels. Furthermore, logistic regression techniques are used to incorporate restrictions on the conditional probabilities and to account for the effect of covariates. Throughout, models are illustrated with an experience sampling methodology study on the course of emotions among anorectic patients.
Springer. 233 Spring Street, New York, NY 10013. Tel: 800-777-4643; Tel: 212-460-1500; Fax: 212-348-4505; e-mail:; Web site:
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A