NotesFAQContact Us
Collection
Advanced
Search Tips
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1260600
Record Type: Journal
Publication Date: 2020-Aug
Pages: 35
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-0049-1241
EISSN: N/A
Optimizing Count Responses in Surveys: A Machine-Learning Approach
Fu, Qiang; Guo, Xin; Land, Kenneth C.
Sociological Methods & Research, v49 n3 p637-671 Aug 2020
Count responses with grouping and right censoring have long been used in surveys to study a variety of behaviors, status, and attitudes. Yet grouping or right-censoring decisions of count responses still rely on arbitrary choices made by researchers. We develop a new method for evaluating grouping and right-censoring decisions of count responses from a (semisupervised) machine-learning perspective. This article uses Poisson multinomial mixture models to conceptualize the data-generating process of count responses with grouping and right censoring and demonstrates the link between grouping-scheme choices and asymptotic distributions of the Poisson mixture. To search for the optimal grouping scheme maximizing objective functions of the Fisher information (matrix), an innovative three-step M algorithm is then proposed to process infinitely many grouping schemes based on Bayesian A-, D-, and E-optimalities. A new R package is developed to implement this algorithm and evaluate grouping schemes of count responses. Results show that an optimal grouping scheme not only leads to a more efficient sampling design but also outperforms a nonoptimal one even if the latter has more groups.
SAGE Publications. 2455 Teller Road, Thousand Oaks, CA 91320. Tel: 800-818-7243; Tel: 805-499-9774; Fax: 800-583-2665; e-mail: journals@sagepub.com; Web site: http://sagepub.com
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A