NotesFAQContact Us
Collection
Advanced
Search Tips
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1218193
Record Type: Journal
Publication Date: 2019
Pages: 11
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-0731-1745
EISSN: N/A
Reliably Assessing Growth with Longitudinal Diagnostic Classification Models
Madison, Matthew J.
Educational Measurement: Issues and Practice, v38 n2 p68-78 Sum 2019
Recent advances have enabled diagnostic classification models (DCMs) to accommodate longitudinal data. These longitudinal DCMs were developed to study how examinees change, or transition, between different attribute mastery statuses over time. This study examines using longitudinal DCMs as an approach to assessing growth and serves three purposes: (1) to define and evaluate two reliability measures to be used in the application of longitudinal DCMs; (2) through simulation, demonstrate that longitudinal DCM growth estimates have increased reliability compared to longitudinal item response theory models; and (3) through an empirical analysis, illustrate the practical and interpretive benefits of longitudinal DCMs. A discussion describes how longitudinal DCMs can be used as practical and reliable psychometric models when categorical and criterion-referenced interpretations of growth are desired.
Wiley-Blackwell. 350 Main Street, Malden, MA 02148. Tel: 800-835-6770; Tel: 781-388-8598; Fax: 781-388-8232; e-mail: cs-journals@wiley.com; Web site: http://www.wiley.com/WileyCDA
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A