NotesFAQContact Us
Collection
Advanced
Search Tips
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1215124
Record Type: Journal
Publication Date: 2019-Apr
Pages: 18
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1092-4388
EISSN: N/A
Age Effects on Neural Representation and Perception of Silence Duration Cues in Speech
Roque, Lindsey; Gaskins, Casey; Gordon-Salant, Sandra; Goupell, Matthew J.; Anderson, Samira
Journal of Speech, Language, and Hearing Research, v62 n4S p1099-1116 Apr 2019
Purpose: Degraded temporal processing associated with aging may be a contributing factor to older adults' hearing difficulties, especially in adverse listening environments. This degraded processing may affect the ability to distinguish between words based on temporal duration cues. The current study investigates the effects of aging and hearing loss on cortical and subcortical representation of temporal speech components and on the perception of silent interval duration cues in speech. Method: Identification functions for the words DISH and DITCH were obtained on a 7-step continuum of silence duration (0-60 ms) prior to the final fricative in participants who are younger with normal hearing (YNH), older with normal hearing (ONH), and older with hearing impairment (OHI). Frequency-following responses and cortical auditory-evoked potentials were recorded to the 2 end points of the continuum. Auditory brainstem responses to clicks were obtained to verify neural integrity and to compare group differences in auditory nerve function. A multiple linear regression analysis was conducted to determine the peripheral or central factors that contributed to perceptual performance. Results: ONH and OHI participants required longer silence durations to identify DITCH than did YNH participants. Frequency-following responses showed reduced phase locking and poorer morphology, and cortical auditory-evoked potentials showed prolonged latencies in ONH and OHI participants compared with YNH participants. No group differences were noted for auditory brainstem response Wave I amplitude or Wave V/I ratio. After accounting for the possible effects of hearing loss, linear regression analysis revealed that both midbrain and cortical processing contributed to the variance in the DISH-DITCH perceptual identification functions. Conclusions: These results suggest that age-related deficits in the ability to encode silence duration cues may be a contributing factor in degraded speech perception. In particular, degraded response morphology relates to performance on perceptual tasks based on silence duration contrasts between words.
American Speech-Language-Hearing Association. 2200 Research Blvd #250, Rockville, MD 20850. Tel: 301-296-5700; Fax: 301-296-8580; e-mail: slhr@asha.org; Web site: http://jslhr.pubs.asha.org
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: National Institute on Deafness and Other Communication Disorders (NIDCD)
Authoring Institution: N/A
Grant or Contract Numbers: R21DC015843