NotesFAQContact Us
Search Tips
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1215002
Record Type: Journal
Publication Date: 2019-Jun
Pages: 33
Abstractor: As Provided
ISSN: ISSN-0013-1644
The Bayesian Multilevel Trifactor Item Response Theory Model
Fujimoto, Ken A.
Educational and Psychological Measurement, v79 n3 p462-494 Jun 2019
Advancements in item response theory (IRT) have led to models for dual dependence, which control for cluster and method effects during a psychometric analysis. Currently, however, this class of models does not include one that controls for when the method effects stem from two method sources in which one source functions differently across the aspects of another source (i.e., a nested method-source interaction). For this study, then, a Bayesian IRT model is proposed, one that accounts for such interaction among method sources while controlling for the clustering of individuals within the sample. The proposed model accomplishes these tasks by specifying a multilevel trifactor structure for the latent trait space. Details of simulations are also reported. These simulations demonstrate that this model can identify when item response data represent a multilevel trifactor structure, and it does so in data from samples as small as 250 cases nested within 50 clusters. Additionally, the simulations show that misleading estimates for the item discriminations could arise when the trifactor structure reflected in the data is not correctly accounted for. The utility of the model is also illustrated through the analysis of empirical data.
SAGE Publications. 2455 Teller Road, Thousand Oaks, CA 91320. Tel: 800-818-7243; Tel: 805-499-9774; Fax: 800-583-2665; e-mail:; Web site:
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A