ERIC Number: EJ1214870
Record Type: Journal
Publication Date: 2019
Pages: 20
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-0022-0973
EISSN: N/A
Approaches for Specifying the Level-1 Error Structure When Synthesizing Single-Case Data
Joo, Seang-Hwane; Ferron, John M.; Moeyaert, Mariola; Beretvas, S. Natasha; Van den Noortgate, Wim
Journal of Experimental Education, v87 n1 p55-74 2019
Multilevel modeling has been utilized for combining single-case experimental design (SCED) data assuming simple level-1 error structures. The purpose of this study is to compare various multilevel analysis approaches for handling potential complexity in the level-1 error structure within SCED data, including approaches assuming simple and complex error structures (heterogeneous, autocorrelation, and both) and those using fit indices to select between alternative error structures. A Monte Carlo study was conducted to empirically validate the suggested multilevel modeling approaches. Results indicate that each approach leads to fixed effect estimates with little to no bias and that inferences for fixed effects were frequently accurate, particularly when a simple homogeneous level-1 error structure or a first-order autoregressive structure was assumed and the inferences were based on the Kenward-Roger method. Practical implications and recommendations are discussed.
Descriptors: Hierarchical Linear Modeling, Synthesis, Data Analysis, Accuracy, Statistical Bias, Difficulty Level, Inferences, Error of Measurement
Routledge. Available from: Taylor & Francis, Ltd. 530 Walnut Street Suite 850, Philadelphia, PA 19106. Tel: 800-354-1420; Tel: 215-625-8900; Fax: 215-207-0050; Web site: http://www.tandf.co.uk/journals
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: Institute of Education Sciences (ED)
Authoring Institution: N/A
IES Funded: Yes
Grant or Contract Numbers: R305D150007