NotesFAQContact Us
Collection
Advanced
Search Tips
Peer reviewed Peer reviewed
PDF on ERIC Download full text
ERIC Number: EJ1195512
Record Type: Journal
Publication Date: 2018-Oct
Pages: 27
Abstractor: As Provided
ISBN: N/A
ISSN: EISSN-2157-2100
EISSN: N/A
Available Date: N/A
Deep Learning vs. Bayesian Knowledge Tracing: Student Models for Interventions
Mao, Ye; Lin, Chen; Chi, Min
Journal of Educational Data Mining, v10 n2 p28-54 Oct 2018
Bayesian Knowledge Tracing (BKT) is a commonly used approach for student modeling, and Long Short Term Memory (LSTM) is a versatile model that can be applied to a wide range of tasks, such as language translation. In this work, we directly compared three models: BKT, its variant Intervention-BKT (IBKT), and LSTM, on two types of student modeling tasks: post-test scores prediction and learning gains prediction. Additionally, while previous work on student learning has often used skill/knowledge components identified by domain experts, we incorporated an automatic skill discovery method (SK), which includes a nonparametric prior over the exercise-skill assignments, to all three models. Thus, we explored a total of six models: BKT, BKT+SK, IBKT, IBKT+SK, LSTM, and LSTM+SK. Two training datasets were employed, one was collected from a natural language physics intelligent tutoring system named Cordillera, and the other was from a standard probability intelligent tutoring system named Pyrenees. Overall, our results showed that BKT and BKT+SK outperformed the others on predicting post-test scores, whereas LSTM and LSTM+SK achieved the highest accuracy, F1-measure, and area under the ROC curve (AUC) on predicting learning gains. Furthermore, we demonstrated that by combining SK with the BKT model, BKT+SK could reliably predict post-test scores using only the earliest 50% of the entire training sequences. For learning gain early prediction, using the earliest 70% of the entire sequences, LSTM can deliver a comparable prediction as using the entire training sequences. The findings yield a learning environment that can foretell students' performance and learning gains early, and can render adaptive pedagogical strategy accordingly.
International Educational Data Mining. e-mail: jedm.editor@gmail.com; Web site: http://jedm.educationaldatamining.org/index.php/JEDM
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: National Science Foundation (NSF)
Authoring Institution: N/A
Grant or Contract Numbers: 1432156; 1660878; 1651909; 1726550
Author Affiliations: N/A