NotesFAQContact Us
Search Tips
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1175309
Record Type: Journal
Publication Date: 2018
Pages: 14
Abstractor: As Provided
ISSN: ISSN-1049-4820
Simulating Serious Games: A Discrete-Time Computational Model Based on Cognitive Flow Theory
Westera, Wim
Interactive Learning Environments, v26 n4 p539-552 2018
This paper presents a computational model for simulating how people learn from serious games. While avoiding the combinatorial explosion of a games micro-states, the model offers a meso-level pathfinding approach, which is guided by cognitive flow theory and various concepts from learning sciences. It extends a basic, existing model by exposing discrete-time evolution, allowing for failure, drop-out, and revisiting of activities, and accounting for efforts made and time spent on tasks, all of which are indispensable elements of gaming. Three extensive simulation studies are presented involving over 10,000 iterations across a wide range of game instances and player profiles for demonstrating model stability and empirical admissibility. The model can be used for investigating quantitative dependences between relevant game variables, gain deeper understanding of how people learn from games, and develop approaches to improving serious game design.
Routledge. Available from: Taylor & Francis, Ltd. 530 Walnut Street Suite 850, Philadelphia, PA 19106. Tel: 800-354-1420; Tel: 215-625-8900; Fax: 215-207-0050; Web site:
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A