NotesFAQContact Us
Search Tips
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1172252
Record Type: Journal
Publication Date: 2018-Mar
Pages: 28
Abstractor: As Provided
ISSN: ISSN-1360-2357
Application of Learning Analytics Using Clustering Data Mining for Students' Disposition Analysis
Bharara, Sanyam; Sabitha, Sai; Bansal, Abhay
Education and Information Technologies, v23 n2 p957-984 Mar 2018
Learning Analytics (LA) is an emerging field in which sophisticated analytic tools are used to improve learning and education. It draws from, and is closely tied to, a series of other fields of study like business intelligence, web analytics, academic analytics, educational data mining, and action analytics. The main objective of this research work is to find meaningful indicators or metrics in a learning context and to study the inter-relationships between these metrics using the concepts of Learning Analytics and Educational Data Mining, thereby, analyzing the effects of different features on student's performance using Disposition analysis. In this project, K-means clustering data mining technique is used to obtain clusters which are further mapped to find the important features of a learning context. Relationships between these features are identified to assess the student's performance.
Springer. 233 Spring Street, New York, NY 10013. Tel: 800-777-4643; Tel: 212-460-1500; Fax: 212-348-4505; e-mail:; Web site:
Publication Type: Journal Articles; Reports - Research
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A