ERIC Number: EJ1157975
Record Type: Journal
Publication Date: 2017
Pages: 13
Abstractor: As Provided
ISBN: N/A
ISSN: EISSN-1436-4522
EISSN: N/A
Available Date: N/A
Recommending Learning Activities in Social Network Using Data Mining Algorithms
Mahnane, Lamia
Educational Technology & Society, v20 n4 p11-23 2017
In this paper, we show how data mining algorithms (e.g. Apriori Algorithm (AP) and Collaborative Filtering (CF)) is useful in New Social Network (NSN-AP-CF). "NSN-AP-CF" processes the clusters based on different learning styles. Next, it analyzes the habits and the interests of the users through mining the frequent episodes by the Apriori algorithm. Finally, it groups dynamically the users based on the collaborative filtering. The participants in this study consisted of 80 university students who were asked to analyze the differences in skill level when using various learning activities. Moreover, 40 students were included in this study in order to examine the effectiveness of NSN-AP-CF. The experiment results proved that the proposed algorithm, which considers the grouping dynamically the users and the discovery of all frequent episodes, generates better precisions compared with the other algorithms (F1 = 0.649).
Descriptors: Social Networks, Pretests Posttests, Cognitive Style, College Students, Educational Environment, Foreign Countries, Learning Activities, Mathematics, Mathematical Logic, Comparative Analysis, Experimental Groups, Control Groups, Data Analysis, Data, Educational Technology
International Forum of Educational Technology & Society. Available from: National Sun Yat-sen University. Department of Information Management, 70, Lien-Hai Rd, Kaohsiung, 80424, Taiwan. Web site: http://www.ifets.info
Publication Type: Journal Articles; Reports - Research
Education Level: Higher Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Identifiers - Location: Algeria
Grant or Contract Numbers: N/A
Author Affiliations: N/A