NotesFAQContact Us
Collection
Advanced
Search Tips
Peer reviewed Peer reviewed
PDF on ERIC Download full text
ERIC Number: EJ1149355
Record Type: Journal
Publication Date: 2017
Pages: 24
Abstractor: As Provided
ISBN: N/A
ISSN: EISSN-1929-7750
EISSN: N/A
How Do Students Learn to See Concepts in Visualizations? Social Learning Mechanisms with Physical and Virtual Representations
Rau, Martina A.
Journal of Learning Analytics, v4 n2 p240-263 2017
STEM instruction often uses visual representations. To benefit from these, students need to understand how representations show domain-relevant concepts. Yet, this is difficult for students. Prior research shows that physical representations (objects that students manipulate by hand) and virtual representations (objects on a computer screen that students manipulate via mouse and keyboard) have complementary advantages for conceptual learning. However, physical and virtual representations are often embedded into different social classroom contexts, which may affect social mechanisms through which students construct connections between concepts and representations. Therefore, this paper focuses on the social events that precede concept-representation connections. Twelve high-school students worked collaboratively with physical and virtual representations of chemistry. Frequent pattern mining of discourse data was used to identify social events that often preceded concept-representation connections. Qualitative analysis investigated social mechanisms through which these events may enhance concept-representation connections. Results show that students construct concept-representation connections incrementally. Further, meta-cognitive strategies and instructor prompts often preceded concept-representation connections. Finally, differences between physical and virtual representations were mainly due to different social supports being available in the context in which the representations were embedded. I discuss contributions to literature on learning with multiple representations and to interventions that blend representation modes.
Society for Learning Analytics Research. 121 Pointe Marsan, Beaumont, AB T4X 0A2, Canada. Tel: +61-429-920-838; e-mail: info@solaresearch.org; Web site: http://learning-analytics.info/journals/index.php/JLA/
Publication Type: Journal Articles; Reports - Research
Education Level: High Schools; Secondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A