NotesFAQContact Us
Search Tips
Peer reviewed Peer reviewed
PDF on ERIC Download full text
ERIC Number: EJ1149199
Record Type: Journal
Publication Date: 2017
Pages: 6
Abstractor: As Provided
ISSN: EISSN-1929-7750
Is Learning Data in the Right Shape?
Kelly, Anthony E.
Journal of Learning Analytics, v4 n2 p154-159 2017
In this short thought-piece, I attempt to capture the type of freewheeling discussions I had with our late colleague, Mika Seppälä, a research mathematician from Helsinki. Mika, not being a psychometrician or learning scientist, was blissfully free from the design constraints that experts sometimes ingest, unwittingly. I also draw on delightful conversations with the German research mathematician, Heinz-Otto Peitgen, a polyglot whose work includes advances in medical imaging and explorations in fractal geometry for K-12 students. Together, they taught me to reconsider foundational assumptions about learning, how to describe it, and how to grow it. Accordingly, I use this set of papers as a prompt for examining assumptions that numerical precision ensures scientific insight, that linear models best capture growth in learning, and that relaxing a fixation with time (exemplified by the reification of pre- and post-testing) might open up new topologies for describing, predicting, and promoting learning in its myriad manifestations.
Society for Learning Analytics Research. 121 Pointe Marsan, Beaumont, AB T4X 0A2, Canada. Tel: +61-429-920-838; e-mail:; Web site:
Publication Type: Journal Articles; Reports - Descriptive
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A