NotesFAQContact Us
Collection
Advanced
Search Tips
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1146636
Record Type: Journal
Publication Date: 2017-Jun
Pages: 8
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-1871-1502
EISSN: N/A
Salt, Time, and Metaphor: Examining Norms in Scientific Culture
Brady, Anna G.
Cultural Studies of Science Education, v12 n2 p387-394 Jun 2017
As has been widely discussed, the National Research Council's (NRC) current policy in United States education advocates supporting students toward acquiring skills to engage in scientific practices. NRC policy also suggests that supporting students in the practices of science may require different approaches than what is required for supporting student engagement with scientific content. Further, acquiring skills in scientific practices is not limited to gaining proficiency in utilizing tools that support scientific inquiry: students must also understand how to interpret information generated from such tools. These tools of scientific practices are embedded within scientific culture, which from Sewell's perspective, is comprised of both practice and semiotic code (symbols and meanings). To become scientifically literate students must learn to utilize this code in practice. Author Germà Garcia-Belmonte identified one example of learning to utilize the semiotic code in scientific practice and considers challenges faced by undergraduate physics and engineering students within that context. Garcia-Belmonte observes students struggle to interpret symbols and meaning (the visual display generated) while engaging in practice (utilizing an oscilloscope) and posits that two, culturally bound, competing, linguistic metaphors of time may be the cause. Ultimately, however, the author does not explore beyond hypotheses. Although his theory may be correct, the paper serves as a reminder of the responsibility we have to students. As educators, it is useful and beneficial to make observations and develop theories surrounding why our students struggle. However, in addition to theorizing on why, for example, a particular scientific norm might present challenges for our students, we must remain mindful that challenges may not be uniform and may vary considerably according to students' culture(s). Engaging with students and soliciting specific information regarding the challenges they face allows us, as educators, to both examine whether students' reported challenges align or conflict with our own perceptions of those challenges, and subsequently devise and test methods toward supporting students in overcoming their challenges.
Springer. 233 Spring Street, New York, NY 10013. Tel: 800-777-4643; Tel: 212-460-1500; Fax: 212-348-4505; e-mail: service-ny@springer.com; Web site: http://www.springerlink.com
Publication Type: Journal Articles; Reports - Evaluative
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A