NotesFAQContact Us
Search Tips
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1142782
Record Type: Journal
Publication Date: 2017-Feb
Pages: 3
Abstractor: As Provided
ISSN: ISSN-0031-921X
How Magnus Bends the Flying Ball--Experimenting and Modeling
Timková, V.; Ješková, Z.
Physics Teacher, v55 n2 p112-114 Feb 2017
Students are well aware of the effect of the deflection of sports balls when they have been given a spin. A volleyball, tennis, or table tennis ball served with topspin results in an additional downward force that makes the ball difficult to catch and return. In soccer, the effect of sidespin causes the ball to curve unexpectedly sideways, resulting in a so-called banana kick that can confuse the goalkeeper. These surprising effects attract students' attention such that the motion of sports balls can be used to capture the interest of students towards the physics behind it. However, to study and analyze the motion of a real ball kicked in a playfield is not an easy task. Instead of the large-scale full-size sports ball motion, there can be designed and studied simpler experiments that can be carried out in the classroom. Moreover, digital technologies that are available at schools enable students to collect data from the experiment easily in a reasonable time. The mathematical model based on the analysis of forces acting on the ball flying in the air can be used to simulate the motion in order to understand the basic physical principles of the motion so that the best correspondence may be found.
American Association of Physics Teachers. One Physics Ellipse, College Park, MD 20740. Tel: 301-209-3300; Fax: 301-209-0845; e-mail:; Web site:
Publication Type: Journal Articles; Reports - Descriptive
Education Level: N/A
Audience: Teachers
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A